室内复杂环境处理及泰勒公式改进定位算法研究
DOI:
CSTR:
作者:
作者单位:

西北师范大学物理与电子工程学院 甘肃 兰州 730070

作者简介:

通讯作者:

中图分类号:

TN9;TP3

基金项目:

国家自然科学基金(61861041)


Research on Indoor Complex Environment Processing and Improved Positioning Algorithm of Taylor Formula
Author:
Affiliation:

School of Physics and Electronic Engineering,Northwest Normal University,Lanzhou,Gansu 730070,china

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    室内环境具有复杂性和多变性等特点,为了实现室内精准定位,需要对室内环境进行建模处理,进而对目标实现定位估计。针对现有的室内定位算法定位精度不高等问题,本文根据室内环境的特点,采用对数正态分布模型,用泰勒公式改进传统最小二乘算法,实现了更加精准的室内目标定位。该算法中,首先使用均值卡尔曼滤波(Kalman Filter)对室内环境建模处理,消除随机噪声的干扰。接着对最小二乘算法得到的估计坐标用泰勒公式展开,构建循环迭代,使之逐渐逼近真实目标位置。实验结果表明,改进算法更好地提高了定位精度,得到了更加准确的估计坐标位置,保证了定位偏差的稳定性。

    Abstract:

    The indoor environment has the characteristics of complexity and variability. In order to achieve accurate indoor positioning, it is necessary to model the indoor environment to estimate the target's positioning. Aiming at the problem of low positioning accuracy of the existing indoor positioning algorithms, this paper adopts the lognormal distribution model according to the characteristics of the indoor environment, and uses Taylor formula to improve the traditional least squares algorithm to achieve more accurate indoor target positioning. In this algorithm, the average Kalman filter (Kalman Filter) is first used to model the indoor environment to eliminate the interference of random noise. Then the estimated coordinates obtained by the least squares algorithm are expanded with Taylor's formula to construct a loop iteration to gradually approach the real target position. The experimental results show that the improved algorithm better improves the positioning accuracy, obtains a more accurate estimated coordinate position, and ensures the stability of the positioning deviation.

    参考文献
    相似文献
    引证文献
引用本文

白晓娟,道 伟,关 露,赵 超.室内复杂环境处理及泰勒公式改进定位算法研究[J].电子测量技术,2021,44(3):55-59

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-19
  • 出版日期:
文章二维码