基于Bi-LSTMA-CNNA的线上评论情感分析模型
DOI:
CSTR:
作者:
作者单位:

华中师范大学物理科学与技术学院 武汉 430070

作者简介:

通讯作者:

中图分类号:

TP183;TP391.1

基金项目:


Online comment sentiment analysis based on Bi-LSTMA-CNNA
Author:
Affiliation:

Central China Normal University College of Physical Science and Technology,Wuhan 430070 ,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于深度学习的文本情感分析是目前自然语言处理研究的重要方向,本文在卷积神经网络、双向长短期记忆网络的基础上提出一种性能优于前面两种算法的情感分析算法。改进后的情感分析算法结合传统的深度学习结构,将双向长短期记忆网络、卷积神经网络以及注意力机制相结合,其中双向长短期记忆网络与注意力机制相结合的部分主要用来提取全局特征,并对目标词重点关注;卷积神经网络与注意力机制相结合的部分主要用来提取局部重要特征;最后将两部分特征相融合再进行分类。实验结果表明在对线上评论情感分析时,CNN模型的F1为0.7939、Bi-LSTM的F1为0.7959、Bi-LSTM-Attention的F1为0.7998、Bi-LSTMA-CNNA的F1为0.8028;因此改进后的模型性能优于其它三个模型。

    Abstract:

    Text emotion analysis based on deep learning is an important direction of natural language processing research at present. Based on CNN and Bi-LSTM this paper proposes a emotion analysis algorithm with better performance than the previous two algorithms.The improved emotion analysis algorithm combines the traditional deep learning structure and combines the Bi-LSTM,CNN and Attention mechanism. The part combining the Bi-LSTM and Attention mechanism is mainly used to extract global features and focus on target words.The part of CNN and Attention mechanism is mainly used to extract local important features.Finally, the characteristics of the two parts are integrated and then classified. The results of the experiment showed that when analyzing the emotions of online comments , The F1 of CNN model was 0.7939, the F1 of BI-LSTM was 0.7959, the F1 of BI-LSTM-Attention was 0.7998,and the F1 of BI-LSTMA-CNNA was 0.8028.Therefore, the performance of the improved model is better than the other three models.

    参考文献
    相似文献
    引证文献
引用本文

占 妮.基于Bi-LSTMA-CNNA的线上评论情感分析模型[J].电子测量技术,2021,44(3):83-86

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-19
  • 出版日期:
文章二维码