鲸鱼优化算法的乳腺癌图像分类的应用研究
DOI:
CSTR:
作者:
作者单位:

江苏科技大学海洋学院 镇江 212001

作者简介:

通讯作者:

中图分类号:

TN87

基金项目:

国家自然科学基金(61804068)项目资助


Study on the application of whale optimization algorithm for breast cancer image classification
Author:
Affiliation:

Ocean College, Jiangsu University of Science and Technology, Zhenjiang 212001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对乳腺癌超声图像中恶性与良性肿瘤的区分难题,提出了一种基于EfficientNet模型改进的方法。本文引入了改进的鲸鱼优化算法(WOA)和全局上下文(GC)模块,旨在提高乳腺癌早期检测的准确性和效率。该模型通过深度可分离卷积和大核心卷积结合,优化了特征提取和分类性能。此外,还对模型进行了动态超参数调整和数据增强处理,进一步增强了模型的泛化能力和稳定性。实验结果显示,该模型在训练集上的准确率达到99.81%,验证集上达到98.06%,明显优于传统方法。平均精度(mAP)从96.42%提升至98.60%,表明该模型能有效提高早期诊断的准确性和可靠性,为乳腺癌的早期筛查和诊断提供了一种高效的技术路径。

    Abstract:

    To addresses the challenge of distinguishing between malignant and benign tumors in breast cancer ultrasound images, an improved method based on the EfficientNet model is proposed. This thesis introduced an enhanced whale optimization algorithm (WOA) and a global context (GC) module to improve the accuracy and efficiency of early breast cancer detection. The model optimizes feature extraction and classification performance by combining depthwise separable convolution and large kernel convolution. Additionally, dynamic hyperparameter tuning and data augmentation were applied to further enhance the model′s generalization ability and stability. Experimental results show that the model achieved an accuracy of 99.81% on the training set and 98.06% on the validation set, significantly surpassing traditional methods. The mean average precision (mAP) was increased from 96.42% to 98.60%, demonstrating the model′s effectiveness in improving the accuracy and reliability of early diagnosis, providing an efficient technical pathway for early screening and diagnosis of breast cancer.

    参考文献
    相似文献
    引证文献
引用本文

陈诺,朱琎,赵启程,刘圣凯.鲸鱼优化算法的乳腺癌图像分类的应用研究[J].电子测量技术,2025,48(2):139-146

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-12
  • 出版日期:
文章二维码