改进A*算法融合DWA机器人路径规划研究
DOI:
CSTR:
作者:
作者单位:

南京工程学院工程训练中心应用技术学院 南京 211167

作者简介:

通讯作者:

中图分类号:

TN964.1

基金项目:

国家自然科学基金(11701274)、江苏省自然科学基金(BK20170760)、南京工程学院创新基金重大项目(CKJA202206)、南京工程学院研究生教学改革项目(2024YJYJG26,2024YJYJG28)资助


Path planning for robots with improved A* algorithm and fused DWA
Author:
Affiliation:

Engineering Training Center & School of Applied Technology, Nanjing Institute of Technology,Nanjing 211167,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在物流机器人运输流程中,路径规划是核心环节,面临路径不够平滑及算法搜索效率低下的挑战。A*算法作为广泛应用的全局路径规划方法,在应用于物流机器人时存在无法有效实现路径平滑等问题。为此,对传统A*算法进行了改进,通过动态加权处理启发函数,并利用Floyd算法去除路径中的冗余点,同时引入安全距离机制以防碰撞。此外,还对路径进行了平滑优化,以更好地适应物流机器人的实际移动需求。MATLAB仿真结果显示,改进后的A*算法相比传统算法在转折点数量上平均减少了58.5%,路径长度缩短了3.19%,遍历点数降低了59.9%。进一步结合DWA算法进行局部路径规划,实现了避障功能。通过仿真和实车实验验证了该融合算法的有效性。

    Abstract:

    In the logistics robot transportation process, path planning is the core link, facing challenges such as insufficiently smooth paths and low algorithm search efficiency. The A* algorithm, as a widely used global path planning method, has problems such as ineffective path smoothing when applied to logistics robots. To this end, the traditional A* algorithm has been improved by dynamically weighting the heuristic function and using the Floyd algorithm to remove redundant points in the path, while introducing a safe distance mechanism to prevent collisions. In addition, the path has been smoothed and optimized to better adapt to the actual movement needs of logistics robots. The MATLAB simulation results show that the improved A* algorithm reduces the average number of turning points by 58.5%, shortens the path length by 3.19%, and reduces the number of traversal points by 59.9% compared to traditional algorithms. Further combining with DWA algorithm for local path planning, obstacle avoidance function has been achieved. The effectiveness of the fusion algorithm has been verified through simulation and real vehicle experiments.

    参考文献
    相似文献
    引证文献
引用本文

曾宪阳,张加旺.改进A*算法融合DWA机器人路径规划研究[J].电子测量技术,2025,48(6):20-27

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-08
  • 出版日期:
文章二维码