基于改进ResNet深度学习的古代壁画分类方法
DOI:
CSTR:
作者:
作者单位:

1.太原科技大学计算机科学与技术学院 太原 030024; 2.忻州师范学院计算机系 忻州 034000; 3.山西工程技术学院大数据与智能工程系 阳泉 030002

作者简介:

通讯作者:

中图分类号:

TP391;TN03

基金项目:

国家自然科学基金面上项目(62372397)、教育部人文社会科学研究项目(规划基金项目)(21YJAZH002)、山西省自然基金面上项目(202203021221222)、山西省文物局2024年度文物科研课题(2024KT23)项目资助


Classification of ancient murals based on improved ResNet deep learning
Author:
Affiliation:

1.School of Computer Science and Technology, Taiyuan University of Science and Technology,Taiyuan 030024, China; 2.Department of Computer, Xinzhou Normal University,Xinzhou 034000, China; 3.Department of Big Data and Intelligent Engineering, Shanxi Institute of Technology, Yangquan 030002, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对壁画图像人物间纹理,轮廓相似,不同场景下壁画人物特征差异较大,背景噪声复杂,分类易混淆等问题,提出了一种针对ResNet卷积神经网络的改进策略。首先将模型输入层中较大的7×7卷积核分离为3个串联的3×3小卷积核堆积的主干,将2×2平均池化与最大池化进行add特征融合取代原最大池化操作,增强模型的表征能力。其次设计了一种多尺度高效的空间通道注意模块,以ECA通道注意力模块为基础,串联空间注意力模块,将空间模块中原3×3卷积核替换为SK注意力模块,融合多尺度信息捕捉全局长距离依赖关系,降低背景噪声的干扰。最后提出一种蜂窝式聚合结构,将相邻的block块中的输出信息进行add操作,作为后续层的输入,同时捕获低级和高级特征,增强上下文信息的流通性。实验结果表明:该模型在准确率、精度、召回率和F1值分别达到96.51%、96.65%、96.67%、96.63%。相对于原模型ResNet-18准确率提升9.76%,与主流的分类算法相比分类准确率、泛化能力、稳定性均有一定的提升,能够高效准确识别壁画所属类型,这对于文化遗产保护和艺术史方面研究具有显著价值。

    Abstract:

    Aiming at texture problems, contour similarity among fresco image characters, large differences in fresco character features in different scenes, complex background noise, and confusing classification, an improvement strategy for ResNet convolutional neural network is proposed. Firstly, the larger 7×7 convolutional kernel in the input layer of the model is separated into three series-connected 3×3 small convolutional kernels stacked in the backbone, and 2×2 average pooling and maximum pooling are used for add feature fusion to replace the original maximum pooling operation, which enhances the model′s representative ability. Secondly, a multi-scale efficient spatial channel attention module is designed, based on the ECA channel attention module, the spatial attention module is connected in series, and the original 3×3 convolutional kernel in the spatial module is replaced by the SK attention module, which fuses the multi-scale information to capture the global long-distance dependency, and reduces the interference of background noise. Finally, a cellular aggregation structure is proposed to perform ADD operation on the output information in the neighboring block blocks as inputs to the subsequent layers, capturing both low-level and high-level features to enhance the circulation of contextual information. The experimental results show that the model achieves 96.51%、96.65%、96.67% and 96.63% in accuracy、precision、recall and F1 value, respectively. Relative to the original model ResNet-18 accuracy is improved by 9.76%, and compared with mainstream classification algorithms classification accuracy, generalization ability, and stability are all improved, which can efficiently and accurately identify the type of mural belonging to the mural, which is of significant value for cultural heritage preservation and art history aspects of the research.

    参考文献
    相似文献
    引证文献
引用本文

曹建芳,彭存赫,陈志强,杨卓林.基于改进ResNet深度学习的古代壁画分类方法[J].电子测量技术,2025,48(1):186-196

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-24
  • 出版日期:
文章二维码