基于改进麻雀优化与SVR滑坡位移预测
DOI:
CSTR:
作者:
作者单位:

1.桂林电子科技大学广西精密导航技术与应用重点实验室 桂林 541004; 2.桂林电子科技大学信息与通信学院 桂林 541004; 3.卫星导航定位与位置服务国家地方联合工程研究中心 桂林 541004; 4.南宁桂电电子科技研究院有限公司 南宁 530031; 5.广西气象科学研究所 南宁 530022

作者简介:

通讯作者:

中图分类号:

TN306;P642.22

基金项目:

广西科技厅项目(桂科AA23062038,桂科AD22080061)、国家自然科学基金(62161007,62061010)、桂林市科技项目(20210222-1)、教育部重点实验室2022年主任基金(CRKL220102)项目资助


Landslide displacement prediction based on improved sparrow optimization with SVR
Author:
Affiliation:

1.Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004,China; 2.Information and Communication School, Guilin University of Electronic Technology,Guilin 541004,China; 3.National & Local Joint Engineering Research Center of Satellite Navigation Positioning and Location Service,Guilin 541004,China; 4.GUET-Nanning E-Tech Research Institute Co., Ltd.,Nanning 530031, China; 5.Guangxi Institute of Meteorological Sciences,Nanning 530022, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对滑坡位移具有高度非线性和复杂性,难以利用传统优化算法结合人工智能方法进行更合理、准确的预测建模的问题,本文提出一种L-vy飞行策略的混沌麻雀优化算法(CLSSA)-变分模态分解(VMD)-支持向量回归(SVR)的滑坡位移预测模型。首先利用CLSSA优化VMD分解参数对滑坡位移时间序列进行分解,其次采用CLSSA-SVR模型对VMD分解子序列进行预测,最后通过叠加子序列预测数据求出累计位移预测。以白水河滑坡为例,对该模型进行验证,实验结果表明,所提方法在最终累计位移预测结果中MAE为2.24 mm,RMSE为3.37 mm,R2为0.995,相对于麻雀优化算法变分模态分解支持向量回归(SSA-VMD-SVR),所改进的优化算法增加了VMD的自适应能力,提高滑坡位移各分量预测效率。

    Abstract:

    Aiming at the problem that landslide displacement is highly nonlinear and complex, and it is difficult to use traditional optimization algorithms combined with artificial intelligence methods for more reasonable and accurate predictive modeling, a L-vy flight strategy chaotic sparrow optimization algorithm (CLSSA)-variable modal decomposition (VMD)-support vector regression (SVR) landslide displacement prediction model is proposed. Firstly, CLSSA is used to optimize the VMD decomposition parameters to decompose the landslide displacement time series, secondly, the CLSSA-SVR model is used to predict the VMD decomposition subsequence, and finally, the cumulative displacement prediction is derived by superimposing the subsequence prediction data. The model is validated by taking the Baishui River landslide as an example, and the experimental results show that the proposed method has an MAE of 2.24 mm, an RMSE of 3.37 mm, and an R2 of 0.995 in the final cumulative displacement prediction, and relative to the sparrow optimization algorithm-variable modal decomposition-support vector regression (SSA-VMD-SVR), the improved optimization algorithm increases the adaptive ability of VMD that improves the efficiency of landslide displacement prediction for each component.

    参考文献
    相似文献
    引证文献
引用本文

黄奕朝,孙希延,纪元法,卢伟萍.基于改进麻雀优化与SVR滑坡位移预测[J].电子测量技术,2024,47(20):32-40

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-06
  • 出版日期:
文章二维码