基于GADF和HWP-CBAM-ResNet的弧齿锥齿轮箱故障诊断
DOI:
CSTR:
作者:
作者单位:

1.中北大学机械工程学院 太原 030051; 2.中北大学系统辨识与诊断技术研究所 太原 030051

作者简介:

通讯作者:

中图分类号:

TN06

基金项目:

内燃机可靠性国家重点实验室基金(skler-201911)项目资助


Fault diagnosis for spiral bevel gearboxes based on GADF and HWP-CBAM-ResNet
Author:
Affiliation:

1.School of Mechanical Engineering, North University of China,Taiyuan 030051, China; 2.System Identification and Diagnosis Technology Research Institute, North University of China,Taiyuan 030051, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前流行的残差网络在复杂噪声环境下对弧齿锥齿轮箱故障识别准确率较低的问题,以及传统鲸鱼优化算法(WOA)收敛速度较慢且全局搜索能力较差的问题,本文提出了一种基于格拉姆角差场(GADF)和混合鲸鱼粒子群优化算法的CBAM注意力机制残差网络的智能故障诊断方法。首先,对采集到的一维振动信号进行重叠采样以获得足够的信号样本,然后通过格拉姆角差场编码技术将一维数据转换为二维图像数据,构建不同故障下的二维图像数据集,并通过人为添加噪声的方式以扩大样本数量并验证噪声对诊断方法的影响;然后,在传统ResNet网络中加入CBAM注意力机制模块以增强有用特征、抑制无关特征,从而提升模型的表示能力,将图像数据集输入到混合鲸鱼粒子群优化算法优化的CBAM-ResNet模型中进行训练;最后,使用训练好的CBAM-ResNet模型对弧齿锥齿轮箱故障数据集进行分类,输出诊断结果。实验结果表明,该方法在不进行人为降噪的情况下确识别弧齿锥齿轮箱故障准确率达到100%,且在复杂噪声背景下依然可以达到95.38%,相较其他方法具有更高的准确率、更快的网络收敛速度和更好的鲁棒性。

    Abstract:

    To address the issue of the currently popular residual network having low accuracy in identifying gearbox faults in complex noise environments, and the slow convergence speed and poor global search capability of the traditional whale optimization algorithm(WOA), this paper proposes an intelligent fault diagnosis method based on the gramian angular difference field (GADF) and a hybrid whale-particle swarm optimization algorithm combined with a CBAM attention mechanism residual network. First, the collected one-dimensional vibration signals are overlap-sampled to obtain sufficient signal samples. Then, the gramian angular difference field encoding technique is used to convert the one-dimensional data into two-dimensional image data, constructing a two-dimensional image dataset under different faults. Artificial noise is added to expand the sample size and verify the impact of noise on the diagnostic method. Next, a CBAM attention mechanism module is added to the traditional ResNet network to enhance useful features and suppress irrelevant features, thus improving the model′s representation capability. The image dataset is then input into the HWP algorithm-optimized CBAM-ResNet model for training. Finally, the trained CBAM-ResNet model is used to classify the spiral bevel gearbox fault dataset, outputting diagnostic results. Experimental results show that this method can accurately identify spiral bevel gearbox faults without manual denoising, achieving an accuracy rate of 100%, and maintaining 95.38% accuracy in complex noise environments. Compared to other methods, it has higher accuracy, faster network convergence speed, and better robustness.

    参考文献
    相似文献
    引证文献
引用本文

王翰伟,许昕,潘宏侠,荀小伟.基于GADF和HWP-CBAM-ResNet的弧齿锥齿轮箱故障诊断[J].电子测量技术,2024,47(21):100-110

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-07
  • 出版日期:
文章二维码