基于改进YOLOv7的钢轨缺陷检测方法
DOI:
CSTR:
作者:
作者单位:

东北林业大学计算机与控制工程学院 哈尔滨 150040

作者简介:

通讯作者:

中图分类号:

U216.3;TP391.41;TN249.2

基金项目:

黑龙江省杰出青年项目基金(JQ2023F002)资助


Improved rail defect detection algorithm of YOLOv7
Author:
Affiliation:

College of Computer and Control Engineering, Northeast Forestry University,Harbin 150040, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对铁路轨道缺陷检测精度低,漏检率高,实时性不足的问题,本文提出了一种基于YOLO-FCA的钢轨缺陷检测算法。首先,将YOLOv7的主干网络替换成FasterNet轻量网络,并加入CloAttention注意力模块,减少参数量和计算负载的同时提高缺陷检测的精度。其次,提出MS-ASFF,获取高层语义信息和保留低层详细特征,增强模型检测的准确性和鲁棒性。最后,在不影响精度的情况下进行网络剪枝,使模型更加轻量化,极大地提升了模型的检测速度。在公共数据集上进行实验,结果表明,YOLO-FCA相比原始模型YOLOv7模型的mAP提高了4.1%,达到80.7%,同时检测速度提升了38.5%,达到212.5 FPS。实验结果表明,YOLO-FCA能够高效且准确地定位检测钢轨缺陷。

    Abstract:

    Aiming at the problems of low accuracy, high missed detection rate and insufficient real-time performance of railway track defect detection, this paper proposes a rail defect detection algorithm based on YOLO-FCA. First, the backbone network of YOLOv7 was replaced with the lightweight network of FasterNet, and the attention module of CloAttention was added to reduce the number of parameters and calculation load while improving the accuracy of defect detection. Secondly, a multi-scale adaptive feature fusion network (MS-ASFF) is proposed to obtain high-level semantic information and retain low-level detailed features to enhance the accuracy and robustness of model detection. Finally, the network pruning is carried out without affecting the accuracy, which makes the model more lightweight and greatly improves the detection speed of the model. Experiments on public data sets show that compared with the original YOLOv7 model, the mAP of YOLO-FCA is increased by 4.1%, reaching 80.7%, and the detection speed is increased by 38.5%, reaching 212.5 FPS. The experimental results show that YOLO-FCA can locate and detect rail defects efficiently and accurately.

    参考文献
    相似文献
    引证文献
引用本文

赵亚凤,宋文华,刘晓璐,胡峻峰.基于改进YOLOv7的钢轨缺陷检测方法[J].电子测量技术,2024,47(20):177-185

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-06
  • 出版日期:
文章二维码