基于冠状病毒群体免疫算法的工控入侵检测
DOI:
CSTR:
作者:
作者单位:

中北大学电气与控制工程学院 太原 030000

作者简介:

通讯作者:

中图分类号:

TP309;TN802

基金项目:

山西省科技重大专项计划“揭榜挂帅”项目(202101010101017)资助


Intrusion detection for industrial control system based on coronavirus herd immunity optimizer algorithm
Author:
Affiliation:

School of Electrical and Control Engineering, North University of China,Taiyuan 030000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    工业4.0改革使工业化与信息化进程不断交叉深入,工业控制系统(ICS)数据的非线性、高维度等特点使传统入侵检测方法不再适用。设计了一种基于冠状病毒群体免疫算法(CHIO)的工控入侵检测模型,将Fisher-Score与核主成分分析(KPCA)结合,对数据进行特征提取,有效降低了数据复杂度,通过引入自适应与差分进化策略改进了冠状病毒免疫算法,增强了算法的搜索性能。最后将改进后的算法应用到支持向量机(SVM)模型进行参数寻优,使用密西西比大学天然气管道数据集进行了仿真实验。实验结果表明:改进后的模型在检测准确率及检测速度上与传统模型相比都具有较大优势,检测率可达97.1%。

    Abstract:

    Industrial 4.0 revolution has led to a deeper integration of industrialization and digitalization, resulting in industrial control systems (ICS) characterized by nonlinear and high-dimensional data. These complexities render traditional intrusion detection methods ineffective. In this study, we propose an intrusion detection model for ICS based on the coronavirus herd immunity optimizer (CHIO). The model leverages Fisher-Score and kernel principal component analysis (KPCA) for feature extraction, effectively reducing the complexity of the data. To enhance the search performance of the CHIO, adaptive mechanisms and differential evolution strategies are incorporated. The improved algorithm is then applied to a support vector machine (SVM) for parameter optimization. The performance of the model is validated using the natural gas pipeline dataset from the University of Mississippi. Experimental results demonstrate that the proposed model offers significant improvements in both detection accuracy and speed compared to traditional methods, achieving a detection rate of 97.1%.

    参考文献
    相似文献
    引证文献
引用本文

王浩楠,兰艳亭,方炜.基于冠状病毒群体免疫算法的工控入侵检测[J].电子测量技术,2024,47(20):84-91

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-06
  • 出版日期:
文章二维码