基于改进YOLOv9的钢板表面缺陷检测的方法
DOI:
CSTR:
作者:
作者单位:

华北理工大学电气工程学院 唐山 063210

作者简介:

通讯作者:

中图分类号:

TP391.41;TN791

基金项目:

河北省自然科学基金(F2018209201)项目资助


Method for defect detection on steel plate surface based on improved YOLOv9
Author:
Affiliation:

College of Electrical Engineering, North China University of Science and Technology,Tangshan 063210, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对钢板表面缺陷种类多、缺陷差异较大、漏检率高等问题,提出一种改进YOLOv9的缺陷检测算法。首先,算法通过FasterNet中的FasterBlock改进特征提取网络中的RepNCSPELAN4模块,设计了RepNCSPELAN4-FB模块,实现多尺度特征融合,从而降低模型的参数量,其次,利用iRMB的倒残差结构和一种高效多尺度注意力模块EMAttention相结合形成一种新的iEMA模块,提高网络的精确度,最后,使用Inner-WIOU损失函数,改善边界框回归损失,提高了模型对不均匀分布及不同尺度目标缺陷的检测性能。通过在GC10-DET数据集上进行实验,改进的算法在精确率、召回率和map@0.5方面相比原算法提高了3.5%、3%、2.1%。该模型在钢铁表面缺陷检测中表现有较好的性能。

    Abstract:

    Aiming at the problems of many types of defects on the surface of steel plate, large defect differences, high leakage detection rate, etc., a defect detection algorithm to improve YOLOv9 is proposed. Firstly, the algorithm improves the RepNCSPELAN4 module in the feature extraction network through the FasterBlock in FasterNet, and the RepNCSPELAN4-FB module is designed to realize the multi-scale feature fusion, so as to reduce the number of parameters of the model, and secondly, using the inverse residual structure of iRMB and a kind of highly efficient multi-scale attention module, EMAttention, to combine to form a new iEMA module that improve the accuracy of the network, and finally, using the Inner-WIOU loss function to improve the bounding box regression loss, which improves the model′s detection performance for inhomogeneous distributions and target defects at different scales. Through experiments on the GC10-DET dataset, the improved algorithm improves the precision, recall and map@0.5 by 3.5%、 3% and 2.1% compared with the original algorithm.The model shows good performance in steel surface defect detection.

    参考文献
    相似文献
    引证文献
引用本文

周建新,李忠泽,郝英杰.基于改进YOLOv9的钢板表面缺陷检测的方法[J].电子测量技术,2024,47(22):181-188

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-16
  • 出版日期:
文章二维码