基于改进YOLOv8的低照度煤矿传送带异物识别算法
DOI:
CSTR:
作者:
作者单位:

江苏理工学院电气信息工程学院 常州 213001

作者简介:

通讯作者:

中图分类号:

TN911.73;TP391.41

基金项目:

国家自然科学基金(61901196)、常州市重点实验室项目(CM20223015)资助


Foreign object recognition algorithm of low-light coal mine conveyor belt based on improved YOLOv8
Author:
Affiliation:

School of Electrical and Information Engineering,Jiangsu University of Technology,Changzhou 213001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有煤矿传送带异物检测模型在低光照环境下出现性能不佳,对细长异物和小目标异物存在误检、漏检情况,且模型体积较大,难以在边缘设备部署等问题,提出一种基于改进YOLOv8的低照度煤矿传送带异物检测算法。首先,采用图像增强的方法对低照度图像进行预处理,来增强煤矿传送带异物的有效特征信息;其次,在模型主干网络中引入动态蛇形卷积动态调整卷积核形状,以提升模型对细长异物的关注;此外,使用slim-neck设计范式对颈部网络进行改造,在保证学习能力的同时,大幅减少模型的参数。最后,采用Inner-CIoU损失函数替换CIoU损失函数,加快模型收敛速度,提高模型对细长异物和小目标异物的检测性能。实验结果表明,相较于基准模型,改进后的算法平均检测精度提高了1.6%,模型大小降低了29.7%,检测速度FPS提高了59%,验证了其有效性。在与其他先进模型的对比中,证明了本文算法在复杂环境下仍具有较强的识别能力。

    Abstract:

    To address the issues of existing conveyor belt foreign object detection models in coal mines, which perform poorly in low-light environments, miss elongated and small foreign objects, and have a large model size that hinders deployment on edge devices, this paper proposes a low-light coal mine conveyor belt foreign object detection algorithm based on an improved YOLOv8. First, image enhancement techniques are applied to preprocess low-light images to enhance the effective feature information of foreign objects on the coal mine conveyor belt. Next, dynamic snake convolution is introduced into the model′s backbone network to dynamically adjust the convolution kernel shape, improving the model′s focus on elongated foreign objects. Additionally, a slim-neck design paradigm is used to modify the neck network, significantly reducing the model′s parameters while maintaining learning capability. Finally, the Inner-CIoU loss function is employed to replace the CIoU loss function, accelerating the model′s convergence and improving its detection performance for elongated and small foreign objects. Experimental results show that, compared to the baseline model, the improved algorithm increases the average detection accuracy by 1.6%, reduces the model size by 29.7%, and improves the detection speed (FPS) by 59%, validating its effectiveness. In comparison with other advanced models, it is proved that the proposed algorithm still has strong recognition ability in complex environment.

    参考文献
    相似文献
    引证文献
引用本文

郭志聪,张雷.基于改进YOLOv8的低照度煤矿传送带异物识别算法[J].电子测量技术,2024,47(21):188-196

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-07
  • 出版日期:
文章二维码