基于多模态脑影像的阿尔茨海默病分类方法
DOI:
CSTR:
作者:
作者单位:

四川大学电子信息学院 成都 610065

作者简介:

通讯作者:

中图分类号:

TN911;TP391.4

基金项目:

四川省重点研发计划(2023YFS0195)项目资助


Classification of Alzheimer′s disease based on multimodal brain images
Author:
Affiliation:

College of Electronics and Information Engineering, Sichuan University,Chengdu 610065, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    阿尔茨海默病(AD)是一种神经退行性疾病,是痴呆的主要原因,准确的诊断出AD具有重要意义。利用来自大脑的氟脱氧葡萄糖正电子发射断层成像(FDG-PET)和结构磁共振成像(sMRI)的多模态数据可以从不同角度提供关于病变的全面信息,提高诊断的准确性。然而影像数据具有大量冗余信息,并且不同模态的特征也有显著差异。使用传统的卷积神经网络和简单的特征拼接方法无法有效利用多模态数据的互补信息,从而限制AD的诊断性能。针对此问题,提出了一种结合sMRI与FDG-PET的多模态影像AD分类方法。该方法通过嵌入坐标注意机制和空间通道重构卷积来捕捉影像中的特异性区域并限制冗余信息;同时设计了一种并行交互网络,不仅可以增强每个模态自身的特征,还可以根据其他模态的特征进行自适应调整,从而实现模态之间的有效交互。在ADNI数据集上评估了提出网络的分类性能,准确率、敏感性和特异性分别达到了93.66%、91.67%和95.41%,实验结果表明,与现有的AD分类网络相比,本文提出的网络具有更优异的性能。

    Abstract:

    Alzheimer′s disease (AD) is a neurodegenerative disease that is a significant contributor to dementia. Accurate diagnosis of Alzheimer′s disease (AD) is of great significance. The integration of multimodal data from Fluorodeoxyglucose positron emission tomography (FDG-PET) and structural magnetic resonance imaging (sMRI) of the brain provides a comprehensive information of lesions from multiple perspectives and enhancing diagnostic accuracy. However, the image data is highly redundant, and the features of the various modes are also significantly disparate. Traditional convolutional neural networks and simple feature concatenation methods are unable to effectively utilize the complementary information of multi-modal data, consequently, this limits the diagnostic performance of AD. To solve this problem, we propose a multimodal image AD classification network combining sMRI and FDG-PET. The network incorporates coordinate attention mechanisms and spatial-channel reconstruction convolution to capture specific regions in images and limit redundant information. A parallel interaction network is also designed, which not only enhances each modality′s own features, but also adaptively adjusts itself according to the features of other modalities, thus realizing effective interaction between modalities. The classification performance of the proposed network is evaluated on the ADNI dataset, and the accuracy, sensitivity, and specificity reach 93.66%、91.67% and 95.41%, respectively, the experimental results show that the proposed network in this paper has a superior performance compared to the existing AD classification networks.

    参考文献
    相似文献
    引证文献
引用本文

钟海杰,吴晓红,卿粼波,陈洪刚,何小海.基于多模态脑影像的阿尔茨海默病分类方法[J].电子测量技术,2024,47(23):134-143

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-22
  • 出版日期:
文章二维码