轻量化锻件表面小目标裂纹分割算法
DOI:
CSTR:
作者:
作者单位:

1.水电工程智能视觉监测湖北省重点实验室 宜昌 443002; 2.三峡大学计算机与信息学院 宜昌 443002; 3.三峡大学湖北省建筑质量检测装备工程技术研究中心 宜昌 443002

作者简介:

通讯作者:

中图分类号:

TP391.4;TN98

基金项目:

国家级大学生创新创业训练计划(202011075013)项目资助


Lightweight segmentation algorithm for small target cracks on forging surface
Author:
Affiliation:

1.Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering, China Three Gorges University,Yichang 443002, China; 2.College of Computer and Information Technology, China Three Gorges University,Yichang 443002, China; 3.Hubei Province Engineering Technology Research Center for Construction Quality Testing Equipment, China Three Gorges University, Yichang 443002, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    锻件在制造过程中容易出现裂纹等各种表面缺陷,影响产品质量。针对复杂可见光环境下小目标裂纹容易出现漏检问题,并考虑生产线上高效部署需求,提出LSCPoolFormer算法。首先,采集湖北三环锻造有限公司汽车转向节生产线的磁粉探伤图像,标注后制成FDMPI数据集;然后,使用基于PoolFormer骨干网络的编码器,实现轻量级高效的特征提取;其次,引入渐近特征金字塔作为颈部网络,减少不同尺度特征之间的语义差距;最后,基于动态蛇形卷积提出DSSeghead作为解码头,强化模型对条状裂纹的感知能力,并提出DDS训练策略,降低小目标裂纹丢失的概率。LSC-PoolFormer在FDMPI上的实验结果表明,相较基准模型,该算法的参数量和计算量分别下降9.2%和48.78%,F1分数和IoU分别提升1.1%和1.69%;同时在公开数据集NEU-Seg上的表现也证明了该算法的泛化能力,相较基准模型,大幅度降低参数量和计算量的情况下,mF1分数和mIoU分别提升0.66%和1.04%。实验证明,本文算法在保持检测精度的同时,显著降低算法复杂度,有利于实际部署。

    Abstract:

    Forgings are prone to various surface defects such as cracks during the manufacturing process, which affects product quality. Aiming at the problem that small target cracks are easily missed in complex visible light environments, and considering the requirement of efficient deployment in production line, the LSC-PoolFormer algorithm is proposed. First, the magnetic particle inspection images from the automobile steering knuckle production line of Hubei Sanhuan Forging Co., Ltd. were collected, annotated and made into a FDMPI data set; then, an encoder based on the PoolFormer backbone network was used to achieve lightweight and efficient feature extraction; secondly, the asymptotic feature pyramid is introduced as the neck network to reduce the semantic gap between features of different scales; finally, DS-Seghead is proposed as the decoding head based on dynamic snake convolution to enhance the model′s perception of stripe cracks, and a DDS training strategy is proposed, reducing the probability of missing small target cracks. The experimental results of LSC-PoolFormer on FDMPI show that compared with the baseline model, the parameter amount and calculation amount of this algorithm decreased by 9.2% and 48.78% respectively, and the F1 score and IoU increased by 1.1% and 1.69% respectively. At the same time, the performance on the public data set NEU-Seg also proves the generalization ability of the algorithm. Compared with the baseline model, the mF1 score and mIoU increased by 0.66% and 1.04% respectively while greatly reducing the number of parameters and calculations. Experiment shows that the algorithm in this paper significantly reduces the complexity of the algorithm while maintaining detection accuracy, which is beneficial to the actual deployment.

    参考文献
    相似文献
    引证文献
引用本文

张上,邹扬,张岳.轻量化锻件表面小目标裂纹分割算法[J].电子测量技术,2024,47(21):178-187

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-07
  • 出版日期:
文章二维码