基于混合策略改进的海马优化器及其应用
DOI:
CSTR:
作者:
作者单位:

1.华北理工大学电气工程学院 唐山 063210; 2.华北理工大学智能仪器厂 唐山 063000

作者简介:

通讯作者:

中图分类号:

TP391.9;TN03

基金项目:

河北省自然科学基金(E2020209121)项目资助


Based on the improved sea-horse optimization algorithm with hybrid strategy and its applications
Author:
Affiliation:

1.School of Electrical Engineering, North China University of Science and Technology,Tangshan 063210, China; 2.Intelligent Instrument Factory of North China University of Science and Technology,Tangshan 063000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文针对海马优化算法收敛精度低、全局搜索和局部开发不平衡、易陷入局部最优解等问题,提出了一种基于混合策略改进的海马优化器,记作ISHO。首先,融合灰狼优化算法的搜索特点改进海马优化算法的运动行为,使其能够在搜索空间内更有效地进行全局搜索和局部开发;然后,结合精英反向学习策略细化搜索过程,从而提高收敛精度;最后对海马优化器捕食阶段的参数进行调整,使其具有更强的自适应性避免算法过早的陷入局部最优解。将ISHO与其他6种智能优化算法在8种测试函数上进行比较,实验表明该算法相较于其他算法有更好的收敛速度、收敛精度和稳定性。将改进的海马优化算法应用到解决工程约束问题上,进一步证明改进算法的实用性。

    Abstract:

    This paper addresses the issues of low convergence accuracy, imbalance between global and local search, and the tendency to get stuck in local optima in the Sea-horse Optimizer. An Improved Sea-horse Optimizer based on a hybrid strategy, denoted as ISHO, is proposed. Firstly, the search characteristics of the Grey Wolf Optimizer are integrated to improve the movement behavior of the SHO, enabling more effective global and local searches within the search space. Then, an elitism and reverse learning strategy is incorporated to refine the search process and enhance convergence accuracy. Finally, adjustments are made to the parameters of the predation phase of the SHO to give it stronger adaptability, avoiding premature convergence to local optima. The ISHO is compared with six other intelligent optimization algorithms on eight test functions. Experimental results show that the proposed algorithm has better convergence speed, accuracy, and stability compared to the other algorithms. Applying the improved seahorse optimization algorithm to solve engineering constraint problems further proves the practicality of the improved algorithm.

    参考文献
    相似文献
    引证文献
引用本文

康培培,薛贵军,谭全伟.基于混合策略改进的海马优化器及其应用[J].电子测量技术,2024,47(23):93-103

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-22
  • 出版日期:
文章二维码