融合公平因子的半监督学习医学图像分割模型
DOI:
CSTR:
作者:
作者单位:

1.无锡学院电子信息工程学院 无锡 214000; 2.南京信息工程大学电子与信息工程学院 南京 210000

作者简介:

通讯作者:

中图分类号:

TN391.4

基金项目:

国家青年自然基金(62106111)、2022年第二批产学合作协同育人项目(220903806051637)资助


Semi-supervised learning medical image segmentation model fused with equity factors
Author:
Affiliation:

1.School of Electronic Information Engineering, Wuxi University,Wuxi 214000, China; 2.School of Electronics and Information Engineering, Nanjing University of Information Science and Technology,Nanjing 210000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决部分稀缺医学图像分割任务中目标语义类别分布不平衡导致的模型泛化能力受限问题,本文提出一种半监督学习的医学图像分割模型CDCL-SSLNet。通过UNet和Swin-UNet两种不同属性的分割子模型进行交叉学习,实现特征优势互补。引入类分布公平因子和类学习公平因子对损失函数合理加权,动态地指导模型学习语义类别不平衡数据,有效减小学习偏差,进而提高模型泛化能力。实验选取Synapse多器官分割数据集中5%、10%的数据模拟标签数据对模型进行训练。CDCL-SSLNet在仅有5%和10%的标签数据参与训练的情况下,其Dice系数分别达到了65.71%和77.49%,HD95则分别为28.97和22.07,这两项指标的性能提升幅度均达到了17%。结果表明CDCL-SSLNet能够兼顾大目标及微小目标的精准分割,有效解决了稀缺数据中类分布不平衡导致的模型泛化能力不足的问题,有效提升了医学图像分割的效率与准确性。

    Abstract:

    In order to solve the problem of limited model generalization ability caused by imbalanced distribution of target semantic categories in some scarce medical image segmentation tasks, this paper proposes a semi-supervised learning medical image segmentation model CDCL-SSLNet, which achieves feature complementarity through cross-learning of two segmentation submodels with different attributes, namely, UNet and Swin-UNet. The introduction of class distribution fairness factor and class learning fairness factor reasonably weights the loss function, dynamically guides the model to learn the unbalanced data of semantic categories, effectively reduces the learning bias, and then improves the model generalization ability. In the experiment, 5% and 10% of the data in Synapse multi-organ segmentation dataset are selected to simulate labeled data to train the model. When only 5% and 10% of the label data participated in the training, the Dice coefficients of CDCL-SSLNet reached 65.71% and 77.49%, respectively, and the performance of HD95 was 28.97 and 22.07, respectively, and the performance of these two indicators was improved by 17%. The results show that CDCL-SSLNet is able to take into account the accurate segmentation of large and small targets, effectively solves the problem of insufficient model generalization ability caused by the imbalance of class distribution in scarce data, and effectively improves the efficiency and accuracy of medical image segmentation.

    参考文献
    相似文献
    引证文献
引用本文

武丽,丁琴,葛彩成.融合公平因子的半监督学习医学图像分割模型[J].电子测量技术,2024,47(23):171-180

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-22
  • 出版日期:
文章二维码