自适应复杂环境噪声的多重关注联合优化检测算法
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学电子与信息工程学院 南京 210044; 2.无锡学院电子信息工程学院 无锡 214105

作者简介:

通讯作者:

中图分类号:

TP391.4;TN919.8

基金项目:

江苏双创博士基金(JJSSCBS20210871)项目资助


Multi-attention joint optimization detection algorithm for adapting to complex environmental noise
Author:
Affiliation:

1.Electronic and Information Engineering,Nanjing University of Information Science and Technology,Nanjing 210044, China; 2.College of Electronic Information Engineering, Wuxi University,Wuxi 214105, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对自动驾驶车辆视觉感知系统在雾天、雨天等复杂天气下因环境噪声导致目标检测效果不佳的问题,提出基于自适应图像去噪与多重关注的联合优化目标检测算法(DMCYOLO)。构建一个图像去噪网络,融合暗通道先验算法和ACE图像增强技术模块,提升复杂天气下的图像质量;进一步地,将该网络与YOLOv8主干网络相连,并在YOLOv8网络中运用SCDonw卷积代替标准卷积,集成点卷积与深度卷积,降低网络计算成本,同时获得更丰富的下采样信息;采用SEAM注意力模块,整合网络局部信息和全局信息;引入SA检测头,广泛关注上下文特征以保留更多细节信息;在损失函数中引入线性区间映射重构IoU,以提升网络对于不同复杂环境的适应性。实验结果表明,相较于基线模型,改进算法在参数量降低15%的情况下,平均精度提升2.9%,有效增强了自动驾驶车辆在复杂环境下对目标的识别能力,在EC-R3588SPC和Nvidia Jetson NX边缘设备上部署效果良好,可以满足复杂天气下的实时检测需求。

    Abstract:

    To address the issue of inadequate target detection performance in the visual perception systems of autonomous vehicles, particularly under complex weather conditions such as fog and rain that introduce environmental noise, we propose a joint optimization target detection algorithm based on adaptive image denoising and multiple attention mechanisms(DMC-YOLO).An image denoising network has been constructed that combines the dark channel prior algorithm with ACE image enhancement technology to improve image quality in challenging weather conditions. Additionally, this network is integrated with the YOLOv8 backbone, utilizing SCDonw convolution to replace standard convolution. By incorporating point convolution and depth convolution, the aim is to reduce computational costs while obtaining richer down-sampling information.The SEAM attention module is employed to merge local and global information within the network. Furthermore, the SA detection head is introduced to emphasize contextual features, allowing for the retention of more detailed information. To enhance the network′s adaptability to various complex environments, linear interval mapping is incorporated into the loss function for reconstructing IoU.Experimental results indicate that, compared to the baseline model, the average accuracy of the improved algorithm increases by 2.9% while reducing the number of parameters by 15%. This effectively enhances the ability of autonomous vehicles to recognize targets in complex environments.The deployment outcomes on EC-R3588SPC and Nvidia Jetson NX edge devices are promising, fulfilling real-time detection requirements even under challenging weather conditions.

    参考文献
    相似文献
    引证文献
引用本文

张绪康,朱硕.自适应复杂环境噪声的多重关注联合优化检测算法[J].电子测量技术,2025,48(1):175-185

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-24
  • 出版日期:
文章二维码