基于Densenet模型的步态相位识别研究
DOI:
CSTR:
作者:
作者单位:

北京信息科技大学现代测控技术教育部重点实验室 北京 100192

作者简介:

通讯作者:

中图分类号:

TP181;TN98

基金项目:


Research on gait phase recognition based on Densenet model
Author:
Affiliation:

Key Laboratory of Modern Measurement and Control Technology, Ministry of Education,Beijing Information Science and Technology University,Beijing 100192, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    步态识别是下肢外骨骼机器人的关键技术,精准地步态识别对下肢外骨骼机器人的柔性控制具有重要作用。为解决不同个体以及同一个体步态特征(步速、步幅等)的随机性,本文提出了一种基于Densenet改进的SECBAM-Densenet网络模型的步态相位识别方法。首先,将两个惯性测量单元布置在胫骨前部和大腿前侧的股直肌,采集了200人次受试者前进、转弯、上楼梯、下楼梯4种步态任务的步态数据。然后,对数据进行滤波重采样预处理后作为所提模型的输入。最后,利用SECBAM-Densenet模型得到输出模型的分类结果。结果显示,改进后SECBAM-Densenet模型在同一个体中不同步态相位平均识别准确率达到了95.76%,相比其他模型有0.66%~21.22%的提升。在不同个体中,相位的识别准确率均高于94%。以上试验结果表明,本文提出的模型可以应用于步态相位识别领域,并为下肢外骨骼机器人的柔性控制提供了试验参考。

    Abstract:

    Gait recognition is a key technology for lower limb exoskeleton robots, and accurate gait recognition plays a crucial role in the flexible control of these robots. To address the randomness in gait characteristics (such as walking speed and stride length) across different individuals and within the same individual, this paper proposes a gait phase recognition method based on an improved SECBAM-Densenet network model.Firstly, two inertial measurement units were placed on the tibia and the rectus femoris muscle of the thigh to collect gait data from 200 participants performing four gait tasks: walking forward, turning, ascending stairs and descending stairs. After filtering and resampling the data for preprocessing, the processed data were used as input to the proposed model. Finally, the SECBAM-Densenet model was used to classify the gait phases. The results show that the improved SECBAM-Densenet model achieved an average recognition accuracy of 95.76% in different gait phases within the same individual, which represents an improvement of 0.66% to 21.22% compared to other models. For different individuals, the recognition accuracy for each phase was higher than 94%.These experimental results indicate that the proposed model can be applied in the field of gait phase recognition, providing experimental reference for the flexible control of lower limb exoskeleton robots.

    参考文献
    相似文献
    引证文献
引用本文

付明凯,王少红,马超.基于Densenet模型的步态相位识别研究[J].电子测量技术,2025,48(1):119-128

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-24
  • 出版日期:
文章二维码