改进YOLOv8n的轻量级遥感图像军用飞机检测算法
DOI:
CSTR:
作者:
作者单位:

1.上海应用技术大学计算机科学与信息工程学院 上海 201418; 2.上海应用技术大学化学与环境工程学院 上海 201418

作者简介:

通讯作者:

中图分类号:

TP391.4;TN919.4

基金项目:

上海应用技术大学协同创新基金-跨学科、多领域合作研究专项(XTCX2024-03)资助


Improved lightweight military aircraft detection algorithm for remote sensing images with YOLOv8n
Author:
Affiliation:

1.School of Computer Science and Information Engineering, Shanghai Institude of Technology,Shanghai 201418, China; 2.School of Ecological Technology and Engineering, Shanghai Institude of Technology,Shanghai 201418, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有的轻量级目标检测算法在应用于遥感图像军用飞机目标检测任务所面临的模型参数大、检测速度慢的情况,提出一种基于YOLOv8n的轻量级遥感图像军用飞机目标检测算法:LeYOLO-MARs。采用了优化后的倒置瓶颈模块替换原始主干网络中的经典瓶颈模块,更换高效的骨干网络特征提取模式,在保持特征提取能力的同时,有效降低了计算需求并提升了计算速度;颈部网络中引入了快速金字塔架构网络,减少了卷积层数并提高了语义信息共享的效率,减少了锁定和等待时间,同时考虑了有限的并行化机会和架构的复杂性;使用轻量级解耦网络头,通过逐点卷积简化检测头结构;使用Inner-SIoU作为新的定位回归损失函数,提升对小目标样本的学习能力并加快回归边界框的收敛;加入了轻量级金字塔压缩注意力机制模块,有效整合局部注意力和全局注意力,以建立long-range通道依赖关系。实验结果表明,改进的算法在保证检测速度的同时取得了95.7%的检测精度,比基线模型高0.4%,模型参数缩小43%,计算量减少63%,较主流算法在检测效果上有一定的提升,能够对军用飞机目标进行高质量实时检测。

    Abstract:

    Aiming at the large model parameters and slow detection speed encountered by current lightweight target detection algorithms when applied to the task of detecting military aircraft in remote sensing images, this study proposes a lightweight detection algorithm for military aircraft targets based on YOLOv8n, named LeYOLO-MARs. The algorithm introduces an optimized inverted bottleneck module to replace the traditional bottleneck in the backbone network, reducing computational requirements while maintaining feature extraction capabilities and improving processing speed. In the neck network, a fast pyramid architecture is integrated to reduce the number of convolutional layers, enhance the efficiency of semantic information sharing, and decrease lock and wait times, while also considering limited parallelization opportunities and architectural complexity. A lightweight decoupled detection head, simplified through pointwise convolution, is employed, alongside the use of Inner-SIoU as the new localization regression loss function, which enhances the ability to learn from small target samples and accelerates the convergence of bounding box regression. Moreover, the algorithm incorporates a lightweight pyramid compression attention mechanism, effectively combining local and global attention to establish long-range channel dependencies. Experimental results demonstrate that the improved algorithm achieves a detection accuracy of 95.7%, 0.4% higher than the baseline model, while reducing model parameters by 43% and computational load by 63%, marking a notable improvement in detection performance compared to mainstream algorithms and enabling high-quality real-time detection of military aircraft targets.

    参考文献
    相似文献
    引证文献
引用本文

杨瑞君,张浩,叶璟.改进YOLOv8n的轻量级遥感图像军用飞机检测算法[J].电子测量技术,2025,48(1):154-165

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-02-24
  • 出版日期:
文章二维码