基于BP神经网络的储能VSG参数自适应优化策略
DOI:
CSTR:
作者:
作者单位:

广西高校先进制造与自动化技术重点实验室(桂林理工大学) 桂林 541006

作者简介:

通讯作者:

中图分类号:

TN830;TM712

基金项目:

国家自然科学基金(52467022)、广西壮族自治区研究生教育创新计划项目(YCSW2024372)资助


Parameter adaptive optimization strategy of energy storage VSG based on BP neural network
Author:
Affiliation:

Key Laboratory of Advanced Manufacturing and Automation Technology (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region,Guilin 541006, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为改善传统虚拟同步发电机系统参数设计复杂及应对有功指令阶跃时的并网有功动态振荡问题,提出一种基于BP神经网络的储能VSG参数自适应优化策略。首先,阐述储能VSG的工作原理及其特性,分析虚拟惯量与虚拟阻尼对其并网有功动态响应特性的影响并确定参数的取值范围;其次,引入具有良好非线性映射性能的BP神经网络,将其应用于储能VSG参数自适应设计中,实现虚拟惯量和虚拟阻尼系数的实时动态调整,进而优化有功动态响应性能;最后,实验结果表明在有功指令突变工况下所述控制策略较固定参数VSG控制策略有功功率超调量从45%下降至2.5%,调节时间减少了0.89 s,输出频率幅值降低了0.1 Hz,这充分体现了所述策略的有效性和优越性。

    Abstract:

    To improve the complex parameter design of traditional virtual synchronous generator (VSG) system and deal with the dynamic oscillation of grid-connected active power during the step of active power instruction, an adaptive optimization strategy on parameters of energy storage VSG based on BP neural network is proposed. Firstly, the working principle and characteristics of the energy storage VSG are described, and the influence of virtual inertia and virtual damping on dynamic response characteristics of the grid-connected active power is analyzed to determine the range of parameters. Secondly, BP neural network with nonlinear mapping performance is introduced and applied to the adaptive design of energy storage VSG parameters to realize real-time dynamic adjustment of virtual inertia and virtual damping parameters, and then optimize the dynamic response performance of active power. Finally, the experimental results show that the active power overshot of the control strategy is reduced from 45% to 2.5%, the adjustment time is reduced by 0.89 s, and the amplitude of the output frequency is reduced by 0.1 Hz compared with the fixed parameter VSG control strategy under the condition of sudden change of active power instruction, which fully reflects the effectiveness and superiority of the strategy.

    参考文献
    相似文献
    引证文献
引用本文

刘维莎,石荣亮,周其锋,钟志贤.基于BP神经网络的储能VSG参数自适应优化策略[J].电子测量技术,2024,47(23):42-49

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-22
  • 出版日期:
文章二维码