改进的YOLOv8n遥感图像轻量化检测模型
DOI:
CSTR:
作者:
作者单位:

1.内蒙古工业大学信息工程学院 呼和浩特 010080;2.内蒙古工业大学内蒙古感知技术与智能 系统重点实验室 呼和浩特 010080

作者简介:

通讯作者:

中图分类号:

TP751;TN919.8

基金项目:

国家自然科学基金(62361049)、 内蒙古自治区自然科学基金(2022QN06004)项目资助


Improved YOLOv8n lightweight detection model for remote sensing images
Author:
Affiliation:

1.School of Information Engineering, Inner Mongolia Institute of Technology,Huhhot 010080, China;2.Inner Mongolia Institute of Technology, Inner Mongolia Key Laboratory of Perception Technology and Intelligent System,Huhhot 010080, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对遥感图像目标排列密集、尺度差异大以及背景复杂造成的检测虚警率高、检测精度低、漏检和误检的问题,提出了一种基于YOLOv8n的遥感图像检测算法YOLOv8-EP。首先,构建特征聚焦扩散金字塔网络(FFDPN),通过并行深度卷积捕获多尺度信息,同时加入扩散机制将特征信息扩散到各个检测尺度增强特征交互。设计轻量化的任务动态调整检测头(TADD),通过特征共享和并行任务处理,提高检测的定位和分类性能。其次,引入SimAM注意力机制捕捉图像中关键信息,增加模型感受野。最后,引入Inner-CIoU损失函数改善低质量图像对网络梯度的不利影响,加速模型收敛。在NWPU VHR-10数据集和RSOD数据集上的实验结果表明,YOLOv8-EP的mAP 分别达到97.6%和 97.9%,参数量下降13%,相比于YOLOv8n基线网络提升了2.2%和1.5%,能够满足工业部署的要求,整体达到良好的检测性能。

    Abstract:

    Aiming at the problems of high detection false alarm rate, low detection accuracy, leakage and false detection caused by dense target arrangement, large scale difference and complex background of remote sensing images, a remote sensing image detection algorithm YOLOv8-EP based on YOLOv8n is proposed. Firstly, a feature focus diffusion pyramid network (FFDPN) is constructed to capture multi-scale information through parallel deep convolution, while adding a diffusion mechanism to diffuse the feature information to each detection scale to enhance feature interaction. A lightweight task align dynamic detection head (TADD) is designed to improve the localisation and classification performance of detection through feature sharing and parallel task processing. Then, the SimAM attention mechanism is introduced to capture key information in the image and increase the model sensory field. Finally, the Inner-CIoU loss function is introduced to improve the detrimental effect of low-quality images on the network gradient and accelerate the model convergence. Experimental results on the NWPU VHR-10 dataset and RSOD dataset show that YOLOv8-EP achieves a mAP of 97.6% and 97.9%, respectively, with a 13% decrease in the number of parameters, and improves by 2.2% and 1.5% compared to the YOLOv8n baseline network, which can meet the requirements of industrial deployment and achieve good detection performance overall.

    参考文献
    相似文献
    引证文献
引用本文

李泽胤,李栋,房建东,赵磊,张佳惠.改进的YOLOv8n遥感图像轻量化检测模型[J].电子测量技术,2025,48(6):130-142

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-08
  • 出版日期:
文章二维码