基于增强特征融合的轻量级人体姿态估计网络
DOI:
CSTR:
作者:
作者单位:

南京工程学院自动化学院 南京 211167

作者简介:

通讯作者:

中图分类号:

TN911.73

基金项目:

国家自然科学基金面上项目(61873120)、南京工程学院校级科研基金创新基金重大项目(CKJA201903)资助


Light-weight human pose estimation network based on enhanced feature fusion method
Author:
Affiliation:

School of Automation, Nanjing Institute of Technology,Nanjing 211167, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高轻量化人体姿态估计网络对不同阶段特征图的信息提取和特征融合能力和关键点热力图与分类特征图的后处理能力,提出了一种基于多阶段多层级特征融合的人体姿态估计网络。首先设计了多层级特征融合模块,以提高神经网络模型对特征图的信息提取和归纳总结能力;接着设计了结合特征融合模块设计了特征融合分支,以达到保留模型不同阶段的信息不会随长期卷积运算而丢失的效果;最后对模型输出的关键点分类图进行后处理操作,对分类部分使用分类损失增强模块进行进一步增强,使其能够更好地专注于关键点分类任务,以提高模型输出的准确性。在CrowdPose数据集进行性能测试,本文算法和LitePose算法在XS结构下的AP值分别为50.7%和48.4%;在S结构下,AP值分别为59.1%和58.3%。在MS COCO val2017数据集进行性能测试,本文算法和LitePose算法在XS结构下的AP值分别为41.9%和40.6%;在S结构下,AP值分别为57.0%和56.8%。实验结果表明,本文算法提出的多层级特征融合模块和高分辨率融合分支以及后处理操作对人体姿态估计网络检测性能提升具有正向作用。

    Abstract:

    To enhance the lightweight human pose estimation network′s ability to extract information and fuse features from different stages of feature maps, as well as improve the post-processing capability of keypoint heatmaps and classification feature maps, a human pose estimation network based on multi-stage and multi-level feature fusion is proposed. First, a multi-level feature fusion module is designed to improve the neural network model′s ability to extract and summarize information from feature maps. Next, a feature fusion branch is designed in conjunction with the feature fusion module to ensure that information from different stages of the model is preserved without being lost due to long convolution operations. Finally, post-processing operations are applied to the model′s output keypoint classification maps, utilizing a classification loss enhancement module for further enhancement, allowing the model to better focus on the keypoint classification task and improve the accuracy of its outputs. Performance testing is conducted on the CrowdPose dataset, where the AP values of the proposed algorithm and the LitePose algorithm under the XS structure are 50.7% and 48.4%, respectively; under the S structure, the AP values are 59.1% and 58.3%. Performance testing is conducted on the MS COCO val2017 dataset, where the AP values of the proposed algorithm and the LitePose algorithm under the XS structure are 41.9% and 40.6%, respectively; under the S structure, the AP values are 57.0% and 56.8%. Experimental results indicate that the multi-scale feature fusion module, high-resolution fusion branch, and post-processing operations proposed in this paper positively contribute to improving the detection performance of the human pose estimation network.

    参考文献
    相似文献
    引证文献
引用本文

施昕昕,张昊亮.基于增强特征融合的轻量级人体姿态估计网络[J].电子测量技术,2025,48(2):189-198

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-12
  • 出版日期:
文章二维码