融合CNN和Transformer的三维冠状动脉CT图像分割
DOI:
CSTR:
作者:
作者单位:

1.广东工业大学信息工程学院 广州 510006;2.广东技术师范大学电子与信息学院 广州 510665

作者简介:

通讯作者:

中图分类号:

TN911.73;TP391.4

基金项目:

国家自然科学基金(61976058)、广东省科技计划项目(2021A1515012300,2021B0101220006)、广州市科技计划项目(202103000034,202206010007)资助


Integration of CNN and Transformer for 3D coronary artery CT image segmentation
Author:
Affiliation:

1.School of Information Engineering, Guangdong University of Technology,Guangzhou 510006, China;2.School of Electronics and Information, Guangdong Polytechnic Normal University,Guangzhou 510665, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    冠状动脉的分割有利于医生快速诊断心血管疾病,针对冠状动脉复杂结构和其它血管组织干扰带来的难分割,造成大量碎片分割的问题,保证模型对不同形态结构冠脉分割的自适应能力,提出了一种新的三维冠状动脉分割网络模型CA-SegNet。融合CNN和Transformer为骨干网络,利用其优势和互补性,充分提取冠状动脉的局部和全局特征。通过提出多尺度特征交互模块,提取冠脉多尺度特征的同时进行特征通道之间的交互。在解码阶段,提出注意力加权特征融合模块,分别从空间和通道的角度对特征进行加权融合,使模型更加关注冠状动脉区域。实验结果表明,提出的模型在Dice相似系数、Recall、Precision和HD95值分别达到了81.96%、84.24%、80.11%和14.94,优于当前流行的分割网络模型,验证了CA.SegNet的有效性。

    Abstract:

    Segmentation of coronary arteries is crucial for the rapid diagnosis of cardiovascular diseases. Given the challenges posed by the complex structure of coronary arteries and the interference from other vascular tissues, which often result in fragmented segmentation, ensuring the model′s ability to adapt to segmenting different morphological structures of the coronary artery, a novel 3D coronary artery segmentation network (CA-SegNet) is proposed. This model incorporates a combination of CNN and Transformer as the encoder and decoder, leveraging their advantages and complementarity to fully extract both global and local features of coronary arteries. By proposing a multi-scale feature interaction module, the model simultaneously extracts multi-scale features of coronary arteries while facilitating feature channel interaction. In the decoding stage, an attention weighted feature fusion module is proposed to weight and fuse features from both spatial and channel perspectives, enabling the model to focus more on the coronary artery regions. Experimental results demonstrate that the proposed model achieves DSC, Recall, Precision, and HD95 values of 81.96%, 84.24%, 80.11% and 14.94 respectively, surpassing current popular segmentation models and validating the effectiveness of CA-SegNet.

    参考文献
    相似文献
    引证文献
引用本文

潘成龙,刘立程,潘丹.融合CNN和Transformer的三维冠状动脉CT图像分割[J].电子测量技术,2025,48(6):143-151

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-08
  • 出版日期:
文章二维码