基于Inception-BiGRU和注意力机制的频谱感知方法研究
DOI:
CSTR:
作者:
作者单位:

西安科技大学通信与信息工程学院 西安 710600

作者简介:

通讯作者:

中图分类号:

TN92

基金项目:

陕西省科技计划项目(2020GY-029)资助


Spectrum sensing method based on Inception-BiGRU and attention mechanism
Author:
Affiliation:

School of Communication and Information Engineering, Xi′an University of Science and Technology,Xi′an 710600,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    频谱感知是缓解频谱资源短缺的关键技术之一,其中智能频谱感知已成为当前研究的热点方向。针对现有频谱感知方法对信号特征提取不充分以及在低信噪比下频谱感知效果不佳的问题,提出一种由Inception模块、双向门控循环单元、时间注意力机制和全连接层网络组成的频谱感知混合模型。首先,Inception模块对接收到的I/Q信号进行多尺度空间特征的提取;然后,采用双向门控循环单元获取信号的时间序列特征,并通过时间注意力机制强化重要时序特征;最后,全连接层网络将提取到的特征映射到频谱状态的分类空间完成分类识别。实验结果表明,本文方法与多种现有频谱感知方法相比显著提升了感知性能,模型的整体检测准确率达到84.55%,当信噪比为-20 dB时,该方法的感知误差为24%;且对多种调制类型的无线电信号具有较好的适应性。所提方法无需依赖任何先验信息,在低信噪比和复杂无线电环境下展现出较强的鲁棒性,实现了感知性能与模型复杂度的有效平衡,为智能频谱感知提供了一种新的解决方案。

    Abstract:

    Spectrum sensing is one of the key technologies to alleviate spectrum resource shortages, and intelligent spectrum sensing has become a hot research direction. To address the issues of insufficient feature extraction in existing spectrum sensing methods and poor sensing performance under low signal-to-noise (SNR) ratio conditions, a hybrid spectrum sensing model is proposed. The model consists of an Inception module, bidirectional gated recurrent unit, temporal attention mechanism, and fully connected layer network. Firstly, the Inception module extracts multi-scale spatial features from the received I/Q signals. Then, the bidirectional gated recurrent unit is used to capture the temporal sequence features of the signals, while the temporal attention mechanism enhances important temporal features. Finally, the fully connected layer network maps the extracted features to the classification space of spectrum states to complete classification and recognition. The experimental results show that the proposed method significantly improves perception performance compared to several existing spectrum sensing methods. The overall detection accuracy of the model reaches 84.55%, and when the SNR is -20 dB, the perception error of the method is 24%. The proposed method also demonstrates good adaptability to various modulation types of radio signals. It does not rely on any prior information and exhibits strong robustness in low SNR and complex radio environments. This approach achieves an effective balance between perception performance and model complexity, providing a new solution for intelligent spectrum sensing.

    参考文献
    相似文献
    引证文献
引用本文

殷晓虎,张安熠,张珂珂,田冲.基于Inception-BiGRU和注意力机制的频谱感知方法研究[J].电子测量技术,2025,48(6):90-98

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-08
  • 出版日期:
文章二维码