基于改进的小目标交通标志检测算法研究
DOI:
CSTR:
作者:
作者单位:

北京建筑大学智能科学与技术学院 北京 102616

作者简介:

通讯作者:

中图分类号:

TN911

基金项目:

北京市教委科研项目 (KM202110016007)资助


Research on improved small target traffic sign detection algorithm
Author:
Affiliation:

School of Intelligent Science and Technology,Beijing University of Civil Engineering and Architecture,Beijing 102616,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决交通标志小目标检测所存在的漏检、误检和准确率低等问题,本文提出了一种小目标交通标志检测模型YOLOv8-Faster-Ghost-GAM。该算法首先在主干网络的最后一个C2f模块中引入了全局注意力机制(GAM),增强关键特征并抑制无关信息,显著提升了目标检测中的小目标和复杂场景下的识别能力;其次,将主干网络中的每个C2f模块替换为Fasternet,以减少模型参数量,并将普通卷积替换为幻影卷积Ghost,使用低廉的线性变换较少计算量;最后,采用WiOU损失函数,有效提升对低质量样本的识别,精度提升了1.6%,召回率提升了3.2%,证明了所作的改进的有效性。

    Abstract:

    In order to address the issues of missed detections, false positives, and low accuracy in small traffic sign detection, this paper proposes a detection model for small traffic signs, named YOLOv8-Faster-Ghost-GAM. The algorithm introduces a global attention mechanism (GAM) into the last C2f module of the backbone network, enhancing key features and suppressing irrelevant information to significantly improve the detection of small targets and the recognition capability in complex scenarios. Additionally, each C2f module in the backbone network is replaced with FasterNet to reduce the number of model parameters, and standard convolutions are replaced with Ghost convolutions, which use inexpensive linear transformations to reduce computational effort. Finally, the WiOU loss function is employed to effectively improve the recognition of low-quality samples, resulting in a 1.6% increase in precision and a 3.2% increase in recall, thereby demonstrating the effectiveness of the proposed improvements.

    参考文献
    相似文献
    引证文献
引用本文

韩东旭,谢雨飞.基于改进的小目标交通标志检测算法研究[J].电子测量技术,2025,48(6):28-37

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-08
  • 出版日期:
文章二维码