基于改进可控扩散模型的工业缺陷图像生成算法
DOI:
CSTR:
作者:
作者单位:

1.山东科技大学机械电子工程学院 青岛 266590;2.青岛普华重工机械有限公司 青岛 266400

作者简介:

通讯作者:

中图分类号:

TN1

基金项目:

青岛西海岸新区2022年度科技攻关“揭榜制”专项(2022-10)资助


Defect image generation algorithm based on an improved controllable diffusion model
Author:
Affiliation:

1.School of Mechatronic Engineering, Shandong University of Science and Technology,Qingdao 266590,China; 2.Qingdao Puhua Heavy Industry Machinery Co., Ltd.,Qingdao 266400,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    工业场景下,缺陷工件的获取和标注非常困难,对工件缺陷检测带来极大的阻碍。通过少量真实缺陷样本生成大量缺陷样本,极大地缓解了缺陷样本稀缺的问题,但是现有的缺陷生成方法普遍存在生成缺陷样本的表观真实性差和与掩模对齐性差的问题。针对现有问题,文中提出了一种新颖的可控扩散模型AnomalyAlign来生成与掩膜高度对齐的逼真工业缺陷图像。AnomalyAlign在继承文生图大模型Stable Diffusion的先验知识基础上,提出了强语义对齐文本提示生成器,通过该生成器获取语义层面上与真实图像更加对齐的文本提示,促进了模型的收敛;同时,AnomalyAlign还提出了一种缺陷对齐损失来提高生成的缺陷图像和掩模之间的对齐性。通过MVTec-AD上的大量实验验证,AnomalyAlign可以生成与掩模高度对齐的逼真且多样化的缺陷图像,并有效地提升了下游缺陷检测任务的性能。

    Abstract:

    In industrial settings, the acquisition and annotation of defective workpieces pose significant challenges, severely hindering defect detection efforts. While generating a large number of defective samples from limited real-world samples effectively mitigates the issue of sample scarcity, existing defect generation methods are often constrained by suboptimal visual authenticity and poor alignment with defect masks. To address these limitations, this study introduces AnomalyAlign, a novel controllable diffusion model designed to synthesize highly realistic industrial defect images with precise mask alignment. Leveraging the foundational knowledge of the text-to-image model Stable Diffusion, AnomalyAlign incorporates a semantic-aligned text prompt generator to produce text prompts that achieve closer semantic alignment with real images, thereby accelerating model convergence. Furthermore, the model integrates a defect alignment loss function, which enhances the spatial consistency between generated defect images and their corresponding masks. Extensive experimental validation on the MVTec-AD dataset demonstrates that AnomalyAlign generates defect images with superior realism and diversity, while significantly improving the performance of downstream defect detection tasks.

    参考文献
    相似文献
    引证文献
引用本文

陈广庆,陈雅惠,周鹏,刘梓煜,陈玉伦.基于改进可控扩散模型的工业缺陷图像生成算法[J].电子测量技术,2025,48(6):152-160

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-08
  • 出版日期:
文章二维码