融合双瓶颈结构的轴承外圈缺陷检测算法
DOI:
CSTR:
作者:
作者单位:

武汉理工大学机电工程学院 武汉 430070

作者简介:

通讯作者:

中图分类号:

TN-9

基金项目:

国家自然科学基金青年项目(52205168)资助


Algorithm for detecting outer ring defects of bearings using a dual bottleneck structure fusion
Author:
Affiliation:

College of Mechanical and Electrical Engineering, Wuhan University of Technology,Wuhan 430070, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对轴承外圈表面缺陷检测中存在的缺陷尺度变化大、纹理相似与分布密集等问题,以及现有检测模型结构复杂、计算量与检测精度差的挑战,提出一种轻量高效的轴承缺陷检测算法DWA-YOLO。首先,设计了一种即插即用的轻量化双瓶颈结构模块DBM,以有效降低模型复杂度并强化模型对于不同尺度特征的提取能力。其次,在网络主干中引入多尺度特性的小波卷积WTConv作为下采样算子,通过扩大模型的感受野与利用多尺度分析特性来捕捉图像的细节和纹理信息,增强了模型对纹理与噪声的抗干扰能力和上下文信息理解能力,从而提升了整体检测精度。此外,本文设计了联合损失函数Alpha-MPDIoU,利用幂变换机制提高边界框的定位精度与解决检测多框问题。最后,采用辅助检测头训练策略,加快模型的收敛速度并增强了检测能力。实验结果表明,DWA-YOLO相比基线模型在mAP精度上提升3.5%,模型参数量为2.6 M,计算量为7.4 GFLOPs。改进后的模型不仅提高轴承缺陷识别能力,还降低网络复杂度,更加适用于工业现场对轴承外圈表面缺陷的检测需求。

    Abstract:

    A lightweight and efficient bearing defect detection algorithm DWA-YOLO is proposed to address the challenges of large scale variation, similar texture, and dense distribution of defects in the surface defect detection of bearing outer rings, as well as the complexity of existing detection model structures, poor computational complexity, and detection accuracy. Firstly, a plug and play lightweight dual bottleneck structure module DBM was designed to effectively reduce model complexity and enhance the model′s ability to extract features at different scales. Secondly, the wavelet convolution WTConv with multi-scale characteristics is introduced as a downsampling operator in the network backbone. By expanding the receptive field of the model and utilizing the multi-scale analysis characteristics to capture the details and texture information of the image, the model′s anti-interference ability against texture and noise and its ability to understand contextual information are enhanced, thereby improving the overall detection accuracy. In addition, this article designs a joint loss function Alpha-MPDIOU, which utilizes power transformation mechanism to improve the localization accuracy of bounding boxes and solve the problem of detecting multiple boxes. Finally, the use of auxiliary detection head training strategy accelerates the convergence speed of the model and enhances its detection capability. The experimental results show that DWA-YOLO improves mAP accuracy by 3.5% compared to the baseline model, with a model parameter size of 2.6 M and a computational complexity of 7.4 GFLOPs. The improved model not only enhances the ability to identify bearing defects, but also reduces network complexity, making it more suitable for the detection needs of bearing outer ring surface defects in industrial sites.

    参考文献
    相似文献
    引证文献
引用本文

吴飞,范鹏主,马一凡.融合双瓶颈结构的轴承外圈缺陷检测算法[J].电子测量技术,2025,48(6):53-64

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-08
  • 出版日期:
文章二维码