应用VA-UNet的DR图像缺陷分割与评定方法
DOI:
CSTR:
作者:
作者单位:

1.华南理工大学机械与汽车工程学院 广州 510640;2.广东粤电科试验检测技术有限公司 广州 510640

作者简介:

通讯作者:

中图分类号:

TN958.98;TM75;TP391.4

基金项目:

2023南网科技专项 (GDYDKKJ2023-02)资助


The defect segmentation and evaluation method of DR image using VA-UNet
Author:
Affiliation:

1.School of Mechanical and Automotive Engineering, South China University of Technology,Guangzhou 510640,China; 2.Guangdong Yue dian Technology Co., Ltd.,Guangzhou 510640,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    耐张线夹在输电线路中起到连接导线、运载电流作用,其压接质量直接关系电网安全有效运行。针对耐张线夹压接DR图像缺陷检测存在操作复杂、人员要求高等问题,提出应用VAUNet分割技术的DR图像缺陷评定方法。首先研究面向耐张线夹DR图像缺陷的语义分割模型VA-UNet,选用图像特征提取分析能力显著的VGG16作为主干网络,通过融入空间金字塔池化结构ASPP增强多尺度特征融合,引入混合损失函数进而加快模型收敛、提高分割精确度;然后,研究结合模型预测分割结果与相关定量分析的等级评定方法,实现耐张线夹压接DR缺陷危害严重性评估,为后续线夹处理工作提供参考依据。基于数据集准备与试验评价指标分析,开展相关消融实验表明VA-UNet指标mIoU、mPA分别达到84.14%、91.58%,较原始模型显著提高;耐张线夹压接DR缺陷危害严重性评估实验表明方法具有科学性、实用性。

    Abstract:

    The tension clamp plays the role of connecting wires and carrying current in the transmission line, and its crimping quality is directly related to the safe and effective operation of the power grid. In order to solve the problems of complex operation and high personnel requirements in the DR defect detection of tension clamp crimping, a DR image defect evaluation method using VA-UNet segmentation technology was proposed. Firstly, the semantic segmentation model VA-UNet for DR image defects in tension clamps is studied, VGG16 with significant image feature extraction and analysis ability is selected as the backbone network, multi-scale feature fusion is enhanced by integrating spatial pyramid pooling structure ASPP, and mixed loss function is introduced to accelerate the model convergence and improve the segmentation accuracy. Then, a grading method combining the model prediction segmentation results and related quantitative analysis was studied to realize the hazard severity assessment of DR defects in tension clamp crimping, which provided a reference for the subsequent wire clamp treatment. Based on the data set preparation and the analysis of test evaluation indicators, the relevant ablation experiments showed that the mIoU and mPA of VA-UNet reached 84.14% and 91.58%, respectively, which were significantly higher than those of the original model. The experiment of assessing the severity of DR defects in tension clamp crimping shows that the method is scientific and practical.

    参考文献
    相似文献
    引证文献
引用本文

汪灵姿,刘桂雄,张国才,钟飞.应用VA-UNet的DR图像缺陷分割与评定方法[J].电子测量技术,2025,48(6):179-187

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-08
  • 出版日期:
文章二维码