既有办公建筑光伏发电预测的SSA-LSTM 方法研究
DOI:
CSTR:
作者:
作者单位:

1.华南理工大学机械与汽车工程学院 广州 510640;2.广州汇锦能效科技有限公司 广州 510640

作者简介:

通讯作者:

中图分类号:

TN06; TM615

基金项目:

2023年省医学科研基金指令性课题(C2023103)项目资助


Research on photovoltaic generation prediction method of existing office buildings using SSA-LSTM
Author:
Affiliation:

1.School of Mechanical and Automotive Engineering, South China University of Technology,Guangzhou 510640,China; 2.Guangzhou HuiJin Energy Efficiency Technology Co., Ltd.,Guangzhou 510640,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    既有办公建筑(EOB)安装光伏发电(PVG)系统是环保绿电措施之一,但PVG波动性不利于EOB平稳用电,EOB-PVG功率预测非常重要。本文提出一种EOB-PVG功率预测的麻雀搜索算法长短期记忆(SSA-LSTM)方法,对采集得到环境、发电数据集进行多重插补+主成分分析(MI+PCA)预处理并划分数据集,设计LSTM神经网络预测模型,采用SSA对神经网络超参数自动寻优,实现准确预测。实验选取某EOB实际环境、发电数据,预处理后数据集主成分累计贡献率>95%,设计3项评价指标评估预测性能,对比实验结果表明,SSA-LSTM比LSTM、SSA-TCN具有更高预测精度、更强拟合能力,能够较好地准确预测EOB-PVG功率,有助于后续实现EOB智慧用能管控任务。

    Abstract:

    The installation of photovoltaic generation (PVG) systems in existing office buildings (EOB) is one of the environmental green energy measures. However, the fluctuation of PVG negatively impacts the stable electricity use of EOB, making EOB-PVG power prediction crucial. This paper proposes the EOB-PVG power prediction method using sparrow search algorithm-long short-term memory (SSA-LSTM). The method preprocesses the collected environmental and generation data using multiple imputation + principal component analysis (MI+PCA) and splits the dataset. The LSTM neural network prediction model is designed, and SSA is used to automatically optimize the neural network's hyperparameters to achieve accurate prediction. The experiment selects real environmental and generation data from the EOB, and after preprocessing, the cumulative contribution rate of the principal components of the dataset exceeds 95%. Three evaluation metrics are designed to assess prediction performance. Comparison results show that SSALSTM outperforms LSTM and SSA-TCN in prediction accuracy and fitting ability, providing good accuracy in predicting EOB-PVG power and contributing to the subsequent realization of intelligent energy management tasks for EOB.

    参考文献
    相似文献
    引证文献
引用本文

陈浚铿,刘桂雄,谢方静.既有办公建筑光伏发电预测的SSA-LSTM 方法研究[J].电子测量技术,2025,48(6):171-178

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-08
  • 出版日期:
文章二维码