Sensory Data Prediction Using Spatiotemporal Correlation and LSTM Recurrent Neural Network
DOI:
Author:
Affiliation:

Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada V6T 1Z4

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The Wireless Sensor Networks (WSNs) are widely utilized in various industrial and environmental monitoring applications. The process of data gathering within the WSN is significant in terms of reporting the environmental data. However, it might occur that certain sensor node malfunctions due to the energy draining out or unexpected damage. Therefore, the collected data may become inaccurate or incomplete. Focusing on the spatiotemporal correlation among sensor nodes, this paper proposes a novel algorithm to predict the value of the missing or inaccurate data and predict the future data in replacement of certain nonfunctional sensor nodes. The Long-Short-Term-Memory Recurrent Neural Network (LSTM RNN) helps to more accurately derive the time-series data corresponding to the sets of past collected data, making the prediction results more reliable. It is observed from the simulation results that the proposed algorithm provides an outstanding data gathering efficiency while ensuring the data accuracy.

    Reference
    Related
    Cited by
Get Citation

Tongxin SHU.[J]. Instrumentation,2019,6(3):10-17

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: October 29,2020
  • Published:
License
  • Copyright (c) 2023 by the authors. This work is licensed under a Creative
  • Creative Commons Attribution-ShareAlike 4.0 International License.