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Parameter Estimation of Multi-component Chirp Signal
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Abstract ; Chirp signals show energy aggregation in the fractional Fourier domain ( FrFD) which can be used to estimate the pa-
rameter of the signals. In this paper, a parameter estimation method for multi-component chirp signal which corrupted by white
Gaussian noise is proposed based on the discrete fractional Fourier transform (DFrFT) and the differential evolution (DE) algo-
rithm. The proposed algorithm uses the DE algorithm instead of the conventional fine search algorithm to detect the peak of the
signals in the FrFD. The paper simulated the influence of the noise and the resolution of the proposed algorithm. The results of the

simulation show the proposed method does not only improve the estimation accuracy of the peak coordinate, but also reduces time

consuming.
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1 Introduction

Linear frequency modulated ( LEM or chirp)
signals have been widely applied in various areas of
science and engineering' "' . Chirp signal is a typical
bandlimited signal in the fractional Fourier domain
(FrFD) , which exhibits a linear change in instanta-
neous frequency with time. Chirp signals are of parti-
cular interest for sonar systems, radar communica-

tions and channel characterization "> *’

. The frequen-
cy modulated rate of chirp signals can be interpreted
as a convergence order in the FrFD. It is important to
find out the fractional order for detecting or analysis
of bandlimited signal in the FrFD. In this paper, we
are interested in this problem.

The parameter estimation is of interest in nu-
merous engineering fields, such as radar identifica-
tion'"’. Numerous chirp-rate estimated algorithms
which have been suggested in the literature are the
excellent solutions to this task. The maximum likeli-
hood (ML) estimation is a good method to estimate
parameters of chirp signal. Although the maximum
likelihood ratio test has been proved to be optimal
for chirp detection, the large computational com-

plexity it required makes it difficult to apply to prac-

tical problems' '’

In recent years, many techniques based on dif-
ferent theories have been proposed. The authors' " "’
proposed a method based on short-time FrFT and
wavelet transform, which is suitable for analysis of
multi-component and nonlinear chirp signals. How-
ever, the resolution performance suffers from the se-
lection of window functions and the width of win-
dows. A method based on Wigner-Ville transform
(WVT) is proposed''’. When dealing with a single
chirp signal, the method can highlight the instanta-
neous frequency and process such signals perfectly.
However, the WVT method creates cross terms
which bring interference to the results when it deals
with the multi-component chirp signal. So this meth-
od cannot complete the multi-component chirp signal
processing. Even though the improved WVT algo-
rithm"®’ offers a good rejection capability of the cross
terms, it sacrifices the accuracy of the parameter es-

! propose the generalized S-

timation. The authors
transform which is a linear invertible transform and
has no cross term. However, the performance of
time-frequency localization will be inevitably degrad-
ed so that the estimation performance of the weak

components of Chirp signals will be interfered. Jin et
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al.""™ proposed a method based on ambiguity func-
tion which can suppress the interference created by
cross term. But through the theorem we can see it is
difficult for the computer program to obtain the pre-
cise solutions of multi-component chirp signals. Liu

et al. "'

proposed a novel algorithm that combines
segmented discrete polynomial-phase transform and
sparse discrete fractional Fourier transform to yield a
significant reduction of the computational load with a
satisfactory estimation performance.

There are also some other methods which com-
bine the time-frequency methods with other algo-
rithms. The authors[ 14 ] proposed a method to sepa-
rate the signal component using Pseudo Wigner-Ville
Distribution ( PWVD ) combined with Short-time
Fourier Transform ( STFT). The key step of the
whole algorithm is to find the four order central mo-
ment of FrFT, which brings large amount of calcula-
tion. A method based on FrFT and narrow band filter
is put forward which is effective in detection and pa-
rameter estimation of multi-component Chirp signal
[ 15]. The method uses narrow band filter to isolate
the weak signals from the origin chirp signal. The in-
fluence caused by strong signals to the weak signals
can be suppressed. However, the width of the cho-
sen narrow band filter has deep influence on the re-
sult of the parameter estimation. The process of filte-
ring inevitably results in the lost of the weak signal
energy because the window function removes all the

o7 shows us a ef-

energy in the stop band. The paper
ficient arithmetic based on direct and spline interpo-
lation. Compared to the conventional searching algo-
rithm, the method does not only improve the estima-
tion accuracy of the single chirp signal’ s peak coor-
dinate but also save computation load. The algorithm
based on Quasi-Newton method''"®’ has the similar
advantages on computation complexity and accuracy
for the detection of single chirp signal. However,

these algorithms mentioned'® '’

exist shortcomings
when dealing with multi-component chirp signals.
They only find one global optimal solution ( the

strongest signal component) and cannot obtain the

local optimal solutions ( weak signal components) at
the same time.

In this paper, a practical estimation method is
proposed, which combines the differential evolution
(DE) algorithm and fractional Fourier transform.
Since the FrFT is a 1-D linear transform and can be
computed by FFT, this method is more efficient in
computation. Combining with the DE algorithm,
multiple optimal solutions can be obtained at one
time. The performance of parameter estimation and
the efficiency of computation will be greatly im-
proved.

The remainder of this paper is organized as fol-
lows. Section II introduces some preliminaries, such
as the signal model of multi-component chirp sig-
nals, definition of the discrete FrFT and differential
evolution. In section III, the idea and procedure of
the multi-component method is analyzed and the im-
plementation steps are illustrated. The parameter esti-
mation process of multi-component chirp signal con-
sists of rough search and high precision search. In
section IV, we verify the performance of the pro-
posed methods by numerical simulation, and analysis
the results of the simulation. Finally, concludes the

paper in section V.
2 Preliminaries and problem formulation

2.1 Fractional Fourier Transform

The fractional Fourier transform ( FrFT) is a
generalized version of the conventional continuous
Fourier transform. In contrast to the standard Fourier
transformation, the FrFT has gained considerable at-
tention in Fourier optics, quantum mechanics, ra-
dar, variant filtering, signal processing''’ , because
the FrFT makes a connection between time domain
and frequency domain with an additional degree of
freedom. Essentially, the representation of a signal
in the FrFD contains the information of the signal in
both time and frequency domains. The definition of
the FrFT is denoted by follows ' .

X, (u)=F{x(1)] =J+oo_wKa(t,u)x(t)dl

(1)
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where F* denotes the FrFT operator. The kernel

function K (t,u) is given by

K.(t,u)=
Aae,-,-r(tlmm+u2mta—2tu0sm) , # kar (2)
5(” - t) ’ o = 2km
8(u+1), =2+ D,

where A, = /1 — jcota and k € Z . Here we
use the computational method proposed by Ma-
jorkowska-Mech ef al.'**’. This method decomposed
the original DFFT matrix as an algebraic sum of a
dense matrix and of one or two another matrices
which have many zero entries. Thus the calculation
requires a small number of arithmetic operations,
and the DFrFT computation is derived based on the

matrix factorization.

2.2 Differential Evolution

Differential evolution (DE) "**?"' is an evolu-
tionary method which is used to solve continuous op-
timization problem by swarm intelligence. DE opti-
mizes a problem by iteratively improving a candidate
solution with regard to a given measure of quality.
DE is used for multi-dimensional real-valued func-
tions which does not require the optimization prob-
lem to be differentiable. DE has advantages such as
ease of implementation, the nature of parallelism and
good global search ability and so on.

The DE algorithm works by choosing a popula-
tion of candidate solutions. The candidate solutions
are chosen in the search-space by combining simple
mathematical formulae and the positions of existing
solutions. The new solution will be kept if there is an
improvement, otherwise the new solution is simply
discarded. The process is repeated and the optimal
solution is hoped, but not guaranteed, that a satis-
factory solution will eventually be discovered. The
process of the DE is similar with other evolutionary
algorithm including initialization, mutation, cross-
over and selection. The essence of the DE is the dif-
ferential policy by which the individual realized up-
date to be a new variability. DE improves the ability

of adaptive search by efficient use of distribution

groups. The main process is shown in Fig. 1.

(_ mitialization )
| P

Crossover

E No
Selection Yes

L—— (Coutput individual )

Fig. 1 The steps of DE algorithm

2.3 Problem Formulation

The problem can be defined as finding the frac-
tional order o which makes the bandwidth of signal
as narrow as possible. That means the energy of sig-
nal would aggregate in a small bandwidth. Corre-
spondingly there would be a peak in the band of sig-
nal. There is a parametric model for the phase of the
signals components. The model of the chirp signal is

denoted by following :

t 9.
x,(t) = a,rect( 7) %

‘ (3)

= a,-rect( L) 6/2779“”/'779.’?2
i T

where O,(t) = j270,,t + jm6,t°. 0., denotes the
signal modulated frequency, and 6, denotes frequen-
cy carrier, [0, ,0,] is the parameters vector which
needs to be identified. @, denotes the signal ampli-
tude. 7, is the time scale which represents the time
width of ith signal.

The problem can be expressed as finding a

proper (a,,u;) to make the target function | X_(u)
| > maximum where X (u) is the discrete fractional
Fourier transformation of x,(#) at the order o . That

is denoted by :

(a,,u,) = argmax(1 X,(u) %) (4)
Substituting the parameter of Eq. (4) into Eq.
(3), the FrFT of x(t) is denoted by
X (u) = a,TA,sinc[ 7(ucsca — 0,) T, ™
(5)
where T, = NT, .| X (u) | is denoted by
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X(u) | = a;T;sinc[ 7m(ucsca, — 6,)T,] (6)

A/ sina;

The relationship between 6,,,6,,,u, and «; is as

i

the following:

0, =— cote,
0, =ucsca;
A A (1)
I X, (u;) | +/sin,
a; =
i Tl»

3 Parameter Estimation of Chirp Signal
Associated With FrFT

The order estimation can be interpreted as
searching in a two dimensional plane at (u,a) . A
continuous rotation angle « is used as a self-variable
to get an energy distribution. The distinct energy
peak will appear at the optimal order of the DFrFT
of chirp signal. We can make a peak search accord-
ing to the maximum value in the plane by DFrFT on
the composite signal.

We demonstrate two approaches to estimate the
parameters of the single-chirp and multi-chirp re-
spectively. A high precision search based on DE al-
gorithm is proposed to deal with the single chirp sig-
nal. By this method, we can obtain the order a of
single chirp signal easily. To deal with the multi-
component chirp signals, the method based on DE
algorithm is proposed which contains two steps:
rough search and high precision search. Firstly, the
rough search gets the local optimal solutions in a low
accuracy. Then based on the results from the rough
search, we obtain the high optimal solutions by high
precision search.

3.1 Parameters Estimation of Single Chirp

The high precision search algorithm based on
DE to estimate the order of single chirp signal is ex-
pressed as follows:

1) Population Initialization. Get the target vector
o, which has NP elements. Each element in «, is a

random number from O to .

2) Get the Maximum Value from Parent Indi-
vidual. By the a_ th-order FrFT, the maximum value
of chirp signal with each « can be obtained in the Fr-
FD. The maximum value mentioned above represents
the energy aggregation degree in the FrFD, and they

have a significantly positive correlation.

Gopulation Initialization((l,&)

v

Evaluate the Maximum values with the order Oy

v

Mutation and Crossover(0.;)

v

Evaluate the Maximum values with the order 0,

max value 0; > max value Oly;

Yes
v

Replace O; by O;

Achieve accuracy requirements

Yes Yes

A 4
4){)btain the optimal solution 9

Fig. 2 Flowchart of DE algorithm for

single component chirp

3) Mutation and Crossover. Create the mutant
vector a, by mutation. Then obtain the trail vector «,
after the crossover of target vector o, and mutant vec-
tor e, . Here we choose the mutation strategy : DE/
best/1 because this strategy has fast convergence rate
on solving single peak value problem'**"'.

4) Selection Operator. Do the FrFT with the or-

der o, , and get their maximum values which is the

u
same with step2. Then choose the better o from the
parent individual and the new medium individual
which has larger maximum value as «, . By this
step, the better results are selected to retain and the

other results are removed.
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5) Cycle Operator. Repeat step 2, 3, 4 until the
difference between the maximum and minimum of o,
is smaller than a precision value given before or the
max iteration G is reached. We choose the mean val-
ue of the elements in vector o, as the optimal solu-
tion. Thus the best o of one component of the chirp

signal can be obtained.
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(a) Two signals with intersection  (b) Two signals without intersection

Fig. 3 The intersected situation between two signals

Fig.3 gives the amplitude of the FrFT of two
chirp signals. It is observed the peak value of one
component is a superposition of the two components
energy when the two signals have the intersection in
the FrFD. In this situation, one component will af-
fect another component. If we filter the strong com-
ponent to find the order of the weak component, the
energy of weak component will lose which may
bring error to the result. Approaches such as the fine
search algorithm and the Quasi-Newton method have
the same problem, they only obtain the global opti-
mal solution at a time. Although the methods can
solve the problem of parameter estimation of single
component chirp signals, they must use filter to get
the other solutions when dealing with multi-compo-
nent chirp signal. To solve the problem with multi-
component chirp signal, we combine the rough
search and the high precision search.

Comparing with these methods, differential e-
volution is more efficient on calculation. DE algo-
rithm can converge to many local optimal solutions
including the global optimal solution at a time with-

out using filter. Thus the influence of window func-

tions does not exist in our proposed method and the
accuracy of parameter estimation is better than these

traditional methods in some degree.

3.2 Parameters Estimation of Multi-Chirp sig-
nals

As we know the DE algorithm will finally con-
verge to the global optimal solution. Using the fea-
ture that the local optimal solutions appear before the
global optimal solution during the convergence
process, we can get the local optimal solutions as the
order of each component of the chirp signal in a low
accuracy. We insert several steps into the process of
high accuracy search algorithm and get a rough
search algorithm. The rough search algorithm can be

expressed as following .

Gopulation Initialization(OLD

v

Conduct a Mutation, Crossover and Selection Operator [€—

v

Sort of all the elements in a, as X in ascending order

v

Divide X into n groups as X, in ascending order

v

Max(X;)-min(X;)<L1,
Min(X;:1)-max(X;)>L2, 1<i<n

I
Yes
A 4

Save the average value of each group as the order of
each component of Chirp signal

v

Gomplete the Rough SearcD

Fig. 4 Flowchart of Rough Search based on DE

1) Population Initialization. Get the target vector
«, which has NP columns. Each element in «, is a
random number from O to .

2) Preparation Steps. Do step 2, 3, 4 in high
accuracy search algorithm and get the o, to prepare
for the next steps. Here we choose the mutation strat-

egy: DE/rand/1 because this strategy has good
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global exploration ability on solving multi-peak value
problem.

3) Sort and Divide. Sort all the elements of «_ in
ascending order as vector X. Then divide the ele-
ments in X into N vectors X, in ascending order. Thus
we get a set of vectors X, in strict ascending order.

4) Circulation and Judgement. Define the maxi-
mum element in vector X, as max (X, ). Define the
minimum element in vector X, as min ( X,). Define
L, and L, as two constants.

If the following condition:

Max(X;) - Min(X,) < L, , 1 <i <N and
Min(X,,,) - Max(X,) > L, , 1 <t<N -1 (8)
is satisfied, the mean value of the elements in

each X; is the result @ we needed and we finally get
N optimal solutions. Otherwise repeat step 2, 3 until
the condition mentioned above is satisfied.

Based on the rough search, the values of orders
of multi-component chirp signal are determined. The
distribution of the NP individuals during the rough
search process is shown in section 4. The high accu-
racy order can be found by the high precision search
based on the DE algorithm in the neighborhood of
rough searched orders.

The modulated rate of the sampled signal with
time measured in seconds and frequency (Hz) is de-
noted by follows

oL= tan—l(@) (9)

0,
where 0f is the frequency resolution of = 27f./N
, /. 1s the sampling rate, N is the number of sampling
points. Hered: is the time resolution, 6t = 1/f, . The
resolution of the « -order FrFD is as the following:

2
Aa = JT? cos’a + ]377 sin“a (10)

2T2
Hence,
. 27Tf?_ .
0, =- cota,
N
A 27T‘](1A A
0, = Tuicscai (11)
2af 1 X, (u;) | +/sinq;

a; =

' N

The accuracy of the « is fixed to Aa, the

quantization error is denoted by :

e=6, -0,
2 R (12)
=- cota, + ——cot(a, +Aa)
N

It is obvious that the accuracy of the estimation
depends on the real modulated rate, the sampling
rate and the number of sampling points. It has a pos-
itive relationship with chirp-rate, the bigger the
modulated rate 6,, is, the bigger the error is. When
the length of the time is fixed. There is a tradeoff be-
tween length of the FrFT and the resolution. The
smaller sampling rate and larger number of sampling
points will result in the higher resolution. The sam-
pling rate must be large enough to satisfy the Nyquist
rate. The number of sampling points is defined as the
length of DFrFT. Increasing the number of sampling
points will decrease the error, which means that it
will be easier identify chirp signals with the same
center frequency than before. The number of sam-
pling points must be big enough to ensure a reasona-
ble linear approximation to the signal over the time

duration.

4 Numerical Simulation and Performance

Analysis

We separate the simulation into two parts, in-
cluding the single chirp signal simulation and multi-
component chirp signal simulation. The results are e-

valuated by the accuracy and computational load.

Y (4 -a)

The MSE (Mean Squared Error) is used to e-

valuate the accuracy, The number of the FrFT is

(13)

used to access complexity of the algorithm, both the
MSE and the computational complexity are obtained
by mean of the 100 times trials with mutative SNR.
4.1 Single Chirp Signal Simulation

We use the high precision search based on DE
algorithm to deal with the single chirp signal. In this
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single chirp signal case, 8, = 500, 6, = 10. Fig.5
gives a distribution of the chirp signal with variable
(u,a) in the FrFD, in which the sampling rate is f,
= 100Hz and the number of sampling points is 400.
Mean and variance of the additive Gaussian noise is
zero and 1. The SNR of input chirp signal is 1dB.
Fig.6 shows the relationship between the SNR and
MSE. We make 100 trials to find that the statistics
average number of generation is 11. Estimated value
isa = 1.6109 which is a little different due to the
effects of both discrete sampling and noise back-

ground.

[xa(w)] 2

100500

7100

a=Pn/2 00

Fig. 5 The energy distribution of the single chirp signal

MSE(dB)
A
W

Seg
©—6—0—0006 06 0 00060 °

-60 70 0 10
SNR(dB)

Fig. 6 MSE of order of single chirp signal

by high precision search

4.2 Multi-component Chirp Signal Simulation
Fig. 7 gives an distribution of the chirp signal
with variable (u,«) in the FrFT domain, in which
the sampling rate is f, > B¢ and the number of sam-
pling points is 400. Mean and variance of the addi-
tive Gaussian noise is zero and 1 respectively. The
SNR of input chirp signal is 1dB. The energy of

strong component of input chirp signal is two times

than that of weak component. It is observed that the
strong signal may cover up the weak signal. The
rough search method which based on DE algorithm
can obtain the order of the two components of the

signal roughly without eliminating the strong signal.

e 500
Pi/2 - 400
a=Pn/2 0 0 100 u

Fig. 7 The energy distribution of the multi-chirp signal

Fig.8 shows the relationship between the SNR
and MSE, the orderl represent the strong component
and the order2 represent the weak component. Fig.9
shows the MSE of orders while the energy of strong
signal is M times more than that of weak signal ( M
=a,/a,). The distance between «, and «, also affects
the accuracy and MSE of the orders obtained by
rough search. We make a 100 trials to find that the
statistics average number of generation of rough
search is 7. And the results of the simulation show
the mean number of the order « is 1.6109 and 1.
9557.

-20 — orderl
——order2
=251 \
g2\
= '
‘g 350 e
Y N S
40 Ny o e—o—o
453 4 i 8

0
SNR(dB)

Fig. 8 MSE of « of two-component chirp
signal by rough search

As Fig.10 shows, the distribution of the 20 in-
dividuals obtained by rough search is determined by
the search generation. With the search generation in-

creasing, the results gather to the two local optimal
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solutions and the accuracy of the results becomes
higher. The degree of aggregation also relates to the
chirp rate, the energy and the SNR of the chirp sig-

nal.
220 :
o—orderl
—— order2
-25 4
= =30}
=
= y
» -35 > e
= B / o 7
L T T

4 . s
f.O 12 14 16 1.8 20 2224 2628 3.0
M

Fig. 9 MSE of « of two-component chirp signal

under different multiples ( M = «,/a, )

In most practical applications, the frequency of
the chirp signals changes within a certain period of
time, but the start point is not fixed without chan-
ging. Sometimes it may not get the full information
of the signal because the finite time sampling and Fr-
FT only use part of the signal, the other part of sig-

nal need to be sampled at next period.

4.3 Performance Analysis

Here we use the multi-component chirp signal
mentioned above to do the simulation with its SNR =
1dB. According to the simulation results, the rough
search by our method costs 1.55 seconds on average
by our computer. And combined with the high accu-
racy search, the whole algorithm cost 2.75 seconds
on average and then we have high accuracy solu-
tions. While using the algorithm proposed by

14]

Zang'"' | we find only the first step of searching for
the best orders which corresponds to the rough search
in our paper costs 3.37 seconds on average. Thus in
the case of the same accuracy, the algorithm based
on DE we proposed can reduce time consuming ap-
parently.

From the figures above we can see, when we
use high precision search to deal with the single
chirp signal, the result shows that it can suppress the

influence of white Gaussian noise. If the SNR is more

[XiAu)l2

IXiAW)[2

35

30f

e

251

20

L L L L L L L L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8
order

a) The distribution of the 20 individuals by 3 generation rough search

30

*

251

201

L L L L L L i
0 0.2 0.4 0.6 0.8 1 12 14 16 1.8
order

b) The distribution of the 20 individuals by 5 generation rough search

35

30 *

* ¥

*xoxy

L L L s L L L L
0 0.2 0.4 0.6 0.8 1 12 14 16 18
order

¢) The distribution of the 20 individuals by 7 generation rough search

Fig. 10 The distribution of order under

different number of steps.

29

[ |

order 1.25

[} [8) N w

four order central moment

order 1.03
% 02 04 06 08 10 12 14 16 18 2.0

order

Fig. 11 The two solutions obtained by the

method from Zang™*
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than -10dB, the algorithm have high efficiency and
accuracy. Also the searching generation is related to
the accuracy we need and the number of sampling
points.

In the rough searching part, the white Gaussian
noise has influence on the accuracy of the orders we
get, especially the order of weak component of the
signal. Also the difference between the strong signal
and weak signal in terms of energy has influence on
the MSE of results. This phenomenon indicates that
while the SNR of signal is low or the difference of
energy between strong and weak signals is great, the
performance of this method will become bad. Al-
though we could improve the accuracy of the deter-
mination requirements and increase the generation of
DE search to make the performance better, the nega-
tive effect still exist.

The number of multiplications for the DFrFT
with the method"*' is (N + 1)/2 and the number of
additions is (N* + 1)/2 + 2N-2 as the sampling num-
ber N is odd.

5 Conclusion

In this paper, a novel parameter estimation
method for multi-component chirp signals is presen-
ted. The proposed method is based on the discrete
fractional Fourier transformation ( DFrFT) and the
differential evolution (DE) algorithm. The results of
the simulation have shown the proposed method can
provide significant interference suppression. Through
the whole process we can see the algorithm we pro-
posed is different from the method using filters.
Without using non-ideal filter, the weak component
of the signal will have no energy loss. Thus the algo-
rithm guarantees the precious of the result. Compare
with the improved strategies based on WVT, our
method completely avoids the cross terms. Thus the
loss of precision caused by cross terms is not exist
when we process low SNR multi-component chirp
signals. The proposed approach without accuracy
degradation which is instead of a conventional fine

search algorithm can not only improve the estimation

accuracy, but also reduce time consuming, and it is
relative easy to achieve. In addition, sampling dura-
tion and sampling rate also play important roles in

parameter estimation.
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