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Abstract : In order to solve the parameter adjustment problems of adaptive stochastic resonance system in the areas of weak signal

detection, this article presents a new method to enhance the detection efficiency and availability in the system of two-dimensional

Duffing based on particle swarm optimization. First, the influence of different parameters on the detection performance is analyzed

respectively. The correlation between parameter adjustment and stochastic resonance effect is also discussed and converted to the

problem of multi-parameter optimization. Second, the experiments including typical system and sea clutter data are conducted to

verify the effect of the proposed method. Results show that the proposed method is highly effective to detect weak signal from

chaotic background, and enhance the output SNR greatly.
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1 Introduction

Chaos "' is the irregular movement produced by
nonlinear system, which widely exists in meteorolo-
gy, hydrology , communications and other fields **'
such as sea clutter, electrical signals and Electrocar-
diograph (ECG). Sea clutter is the backscatter from
sea surface and is usually treated as noise in tradi-
tional processing methods, which is easy to damage
the useful signal. With the development of the
wave’ s internal mechanisms, the chaotic and fractal

5-6]

features of sea clutter are found "™’ | which is influ-

enced by wave, wind and other complex factors.
In recent years, the nonlinear science has made

considerable progress. Many new methods have been

[7-9

put forward, and some researchers "' have tried to

use nonlinear system to detect weak signal. Stochas-

tic resonance ( SR) was proposed by Benzi "’

et al,
when they studied the ancient glacier meteorological
problems. Since then, SR has been broadly applied

(1130 and has shown

in the fields of signal processing
unique advantages to detect the weak signal in strong

background noise. Due to the synergy of the input

signal and noise, SR produces resonance output to
strengthen the weak signal. In the field of chaos,

ul - .
"is a common nonlinear chaos

Duffing oscillator '
system, and it is sensitive to the chaotic parameters
and immune to noise, which requires the original
frequency of Duffing system has to match the detec-
ted signal. Previous studies on SR mostly concentrat-

U517 in contrast, the discus-

ed on Langevin system
sion about two-dimensional Duffing oscillator is rela-

tively rare and mainly focused on electronic circuit

[18-19 20-21

simulation "or theoretical level *™". Therefore,
the research on the synergistic effect of parameters is
the key point to improve the usefulness of the theory
of stochastic resonance for weak signal detection.
This article investigates the detection of weak
signalunder the chaotic background, based on two-
dimensional Duffing oscillator and particle swarm
optimization (PSO) , and analyzes the effects of dif-
ferent parameters on weak signal detection respec-
tively. The method utilizes PSO to search the global
optimal parameters to enhance the system of two-di-

mensional Duffing for detecting weak periodic signal



4 XING Hongyan, et al; Adaptive stochastic resonance method for weak signal detection based on particle swarm optimization

contained in sea clutter. In addition, to evaluate its-
detection capability, results are compared with other
detection method.

The rest of this article is organized as follows,
Section2 describes the fundamental theory of two-di-
mensional Duffing oscillator and preliminarily analy-
zes the influence of parameters. Section 3 describes
the adaptive stochastic resonance based on PSO and
gives the steps of weak signal detection. Section4 u-
ses other methods to verify the performance of this

new detection method. Section 5 gives a conclusion.
2 Detection features of Duffing oscillator
2.1 Two-dimensional Duffing oscillator

The signals(¢) and noise n(¢) drive the oscilla-
tor equation;

% + ki —ax +bx’ =s(t) +n(t) (1)

Where % and % are second and first order differ-
ential respectively, k is damping ratio, — ax + bx’ is
the nonlinear restoring force, a and b are system pa-
rameters which are both greater than zero. Assuming
s(t)=Acos(2mf,t) is the harmonic signal where 4 is
amplitude and f, is frequency. Besides, n(t)=./2D
&(t) is the white Gaussian noise, where D is noise
intensity, £(¢) is Gaussian noise whose average is 0
and variance is 1. Therefore, equation (1) indicates
the two-dimensional Duffing oscillator is driven by
harmonic and noise.
& + ki —ax + bx’ = Acos(2mfyt) + /2DE(1) (2)

When there is no additional signal, s(¢t)= n(t)=

b
0. The potential function U(x) =— %xz + Zx4 has
two minimums (x = ++/a/b) and a maximum (x = 0)
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in the middle, which causes symmetrical barrier and
two potential wells. The result is shown in Figure 1,
which means the Duffing system is a bistable system.

When signaldcos(2mf,t) enters, the system has a

critical value A ( J44>/27b ) theoretically. In fact,
signal and noise could achieve synergies if A < A, ,
therefore it would transfer some energy of noise to
the signal and the system generates stochastic reso-
nance. As for weak signal detection, the goal is to
shift the energy of noise to the weak signal as much

as possible.
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Fig. 1 Potential function of Duffing system (a=b=1)

2.2 The influence of parameters

According to equation (1), there are four pa-
rameters(i.e., k£, a , b ,andA ) likely to influence
the performance of the system. So that, we set a typ-
ical equation to analyze and discuss the differences,
where k =0.5,a=b=1,A=0.1, f,=0.01Hz , D =
0.4, the sampling frequency f, = SHz . Equation (2)
uses the fourth order Runge-Kutta method to get the
numerical solutions. However, the weak periodic
signals are hidden in the noise and the frequency
peak is not obvious, which is shown in Figure 2.

When D = 0.4, the system achieves stochastic reso-

nance.
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Fig. 2 Input signal (a) Waveform of input signal; (b) Frequency spectrum of the input signal
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In addition, the frequency spectrum of the out-
put is shown in Figure 3(c), which attains its maxi-

mum at f; and larger than the spectrum peak of input.
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Fig. 3 Output signal
(a) Waveform of output signal; (b) Waveform of dx(¢)/

d(t); (c)Frequency spectrum of the output signal

It is worth noting that there might exist better
results than Figure 3(c¢). Hence,to find the optimum
setting, the values of noise intensity, damping ratio
and system parameters are changed respectively, and
other parameters are kept constant at the same time.
Figure 4 shows the frequency spectrum peak of the
characteristic signal changes significant with the
changes of system parameters. Obviously, with the
increase of the parameter value, the curves of k , a ,
b are all rises then falls except D ,which means there
is a set of values to strengthen the energy of weak

periodic signal.

Fig. 4 The influence of parameters

(a) Noise intensity; (b) Damping ratio;

(c) System parameter a; (d) System parameter b

For the purpose of enhancing the practicability
of SR, literature'®’ presents a method about trans-
forming the amplitude and scale of equation (1) for
the detection of weak signals with arbitrary frequen-

cy and amplitude ;
X +hi = /\{ax by’ +Acos{2'n']%tj + @f(t)} (3)

Where A is the amplitude transform coefficient,
R is the scale coefficient. If the original f, doesn’t
satisfy the small parameter condition, the f;/R can
adjust to meet the requirements, also¢” = Rt . What’s
more , these added parameters are just for the sake of

practical need of engineering, while won't affect the

features of stochastic resonance.

3 Adaptive stochastic resonance based on PSO

Generalization ability is the key indicator for
stochastic resonance, which is related to the damping
ratio and system parameters. At present, climbing

»! and genetic algorithm '*"

method ' are used com-
monly. The prior one has high precision, but is easy
to be trapped in local minima. Genetic algorithm
(GA) is a kind of evolutionary algorithm using the
selection, crossover and mutation to find the optimal
value, however the codec is complicated and the

preferences mostly rely on experience. In 1995, Par-
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[25

ticle swarm optimization '*' (PSO) was proposed
by Eberhart et al, and this method is simple and easy
to achieve the overall optimal state. PSO abandons
the steps of crossover and mutation; meanwhile, it
could find the global optimal value by following the
current search, which has the merits of high accura-

cy, fast convergence and good operability.
3.1 Optimization process

First of all, the particle swarm is initialized to a
group of random particles and finds the optimal solu-
tion by iterating calculation. Then particles update
themselves by tracking two extreme values by itera-
tion, which contains the particle itself and the entire
population. Assuming particles form a community of

the M -dimensional space, where i, particle is ex-

th
pressed as a M -dimensional vector

7xiM) 71::172’.“5]\[ (4>
Also, the " flight" speed of i, particle is a M -

X, = (xil sXip,ttt

dimensional vector:
’yiM) ’i:1’29'“7N (5)

The best locationthe i,, particle has searched is

V. = (vil yVins "

called the individual extreme :

Poes = (PasPissPi) » 1= 1,2, N (6)

Meanwhile, the optimal location of the whole
particle swarm is the global extreme .

8est :(pgl’ng"“’ng> ,i=1,2, N (7)

When the algorithm finds the two optimal val-
ues, the particles update the speed and position by e-
quation (8) and (9) -
vy =w X vy e (py —x,) + Czrz(Pgd -x,) (8)

Xig = Xig T Vg (9)

Where ¢, and ¢, are learning factors, r, and r, are
uniform random numbers within the scope of [0,1].
Usually, ¢, =¢, =2,:=1,2,---,M , but the studies

%) have shown that ¢, =

of Parsopoulos and Vrahatis

¢, = 0.5 is better. v, is the speed of the particles,

Viy € [ ~ Unax ’UmaxJ .

3.2 The steps of adaptive stochastic resonance
based on PSO

According to Section 2, even the same input

signal, the different values of the system parameters
have effects on the results in varying degrees. There-
fore, the problem of adaptive stochastic resonance is
converted into multi-dimensional continuous optimi-
zation. Furthermore, the SNR of input and output
signal can directly reflect the performance of weak
signal detection, also be taken as the fitness function
of PSO;

S
fitness(x) = SNR,,, = 10lg N( dB) (10)

L-1
Where S =2 [x(f,) |2, N=Y, |x(f,) > - S,
/=0

x(f,) is the discrete Fourier transform of the sam-
pling sequence. The process is shown in Figure 5,
and the main steps are as follows:

Step 1 Initialize the particle swarm. Set the big-
gest iteration steps 7, population P , dimension D ,
optimum range R in each dimension. Besides, initial-
ize the position vector of the particles randomly.

Step 2 In addition, initialize the best fitness val-
ue and calculate the fitness values of each particle
based on the Equation (10). Moreover, choose the
first generation of the fitness value p, (i) (i = 1,
2,...,N) as the local optimal fitness value, and the
biggest value of g,,, is called the global optimal fit-
ness value.

Step 3 Update the best fitness value. Further-
more, update speed and position constantly accord-
ing to the particle swarm fitness and enhance the sys-
tem until the optimal state.

Step 4 Choose the particle location as the opti-
mal parameters according to the final values of the
global optimal fitness. So far, the optimal adaptive
stochastic resonance is established and can be applied
for weak signal detection. In addition, analyze the
frequency spectrum of the output and calculate the

SNR including the input and output of the signal.

4 Experiment and discussion

Experiment 1:1In order to verify the proposed
method, the periodic signal is firstly used to simu-

late. In Equation (1), the damping ratio k is largely
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Initialize particle swarm

Initialize the best fitness value

A 4

Proceed tg, iteration

Update the speed and position based
on particle swarm fitness value

P — N

. . T
< Meet max number of iterations ? ———

Output the optimal stochastic
resonance

Fig. 5 The steps of adaptive stochastic

resonance based on PSO

to determine the free vibration attenuation speed and
the energy dissipation rate of the stochastic reso-
nance. While the particles want to match the periodic
change of the potential function, system needs stron-
ger noise to provide enough energy. Therefore, the
selection of damping ratiokalso needs some ways.
However, there are three parameters ( k , @ , b ) in
the system of two-dimensional Duffing, which

makes it more difficult to adjust parameters.

In addition, this article firstly selects controlling
variable method to validate the performance of the
proposed method under different conditions. While it
has to ignore the interaction between different pa-
rameters, but the deficiency can be made up by the
features of PSO. Therefore, we respectively select
the weak signal amplitude A = 0.10:-0.01; 0. 01,
noise intensity D =0.1:0.1.:1.0, and get 10 sets of
original signal. The optimizing results are shown in
Table 1, the Ay, has been greatly enhanced along
with the rise in D . On the other hand, although the
SNR of the input continues to decline, but the SNR
of the output remains relatively constant, which
means the performance of the proposed method is
stable and can be completely applied to the condition
of strong noise.

Experiment 2; As to sea clutter, it has been
proved that can be dealt with as colored noise, af-
fected by factors like wind and wave; also its power
spectral density changes with the reciprocal of fre-
quency. Above all, these features will distinctly in-
crease the difficulty of detecting the weak signals
submerged in sea clutter. Therefore, Experiment 2 a-
dopts the sea clutter that contains small target to veri-
fy the performance of the proposed method. The data
is measured by Canadian McMaster IPIX radar'*"!
and its emission frequency is 9.39 GHz, pulse repe-

tition frequency is 1000Hz. Besides all above, each

Table 1 The optimizing results

Serial number A D k a b SNR,,/dB SNR,,/dB A/ dB
1 0.10 0.1 0.0952  0.1678  0.2224 -1.8079 27.4364 29.2443
2 0.09 0.2 01188 03815  0.2238 -5.1188 27.4709 32.5897
3 0.08 0.3 00741 01177  0.3382 -7.8476 27.0004 34.8480
4 0.07 04 01266 01567  0.1318 -10.3314 27.4067 37.7381
5 0.06 0.5 01439  0.1271  0.0937 -12.3118 27.4307 39.7425
6 0.05 0.6  0.1302  0.1648  0.4827 -13.3991 27.2052 40.6043
7 0.04 0.7 0.0891  0.1669  0.1911 -15.7862 27.3142 43.1004
8 0.03 0.8  0.2308 01419  0.3656 -19.8074 28.6813 48.4887
9 0.02 0.9 01053 01714  0.3712 -22.9575 27.4524 50.4099
10 0.01 1.0 0.0864  0.1478  0.2474 -23.9029 30.0117 53.9146
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set of data contains 131072 sampling points and uses
VV polarization mode. What “s more, because the
data contains a periodic signal, and the characteristic
of sea clutter is similar to the noise, which means it
can rightly replace the right side of Equation (1).

For the purpose of satisfying the requirement of
stochastic resonance, the experiment firstly adopts the
Equation (3) to change the frequency and ampli-
tude. Then using the same steps of Experiment 1 to
output the result. Finally, the frequency spectrum is
analyzed to validate whether there exist the weak pe-
riodic signal, meanwhile calculates the final parame-
ters and SNR.
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Fig. 6 The optimization results

(a) The iterative process; (b) Frequency
spectrum of sea clutter; (c) Frequency spectrum of
output signal

In order toverify the effect of the proposed

method, we choose the Genetic Algorithm as the

comparison object. Figure 6(a) shows PSO can get
the optimal parameters with limited steps, and the
performance of it is much better than genetic algo-
rithm especially in the case of local optimum. The
optimized system ultimately gets £ = 0.8367, a =
1.1104, b =0.8367, SNR,, =-12.0434 and SNR,, =
32.4820dB. In addition, the results are even better
than Experiment 1 and literature' *' at the same level
of SNR,, . Figure 6(c) shows there existing a peak
frequency in 0.0137, which proves the energy of sea
clutter can be transferred to the weak signal by the
optimized system of two-dimensional Duffing. In or-
der to avoid the contingency, many experiments are
conducted later, and the results are entirely consist-
ent. All the results made in the optimized system of
two-dimensional Duffing prove that the method in
the article to be effective further, so it is with its u-

niversality, what is flexible to practical problems.

5 Conclusion

This article utilizes the optimizing advantage of
PSO for searching the global optimal parameters,
then the optimized results for stochastic resonance is
applied to utilize the system of two-dimensional Duf-
fing to detect weak signal. As for system parame-
ters, we put focus on the features when each param-
eter changes respectively, especially the change of
SNR

k, a and b ) increases, the trends are consistent and

.. - When the values of three parameters (i.e.,
exist the maximum of each change, which means
there will be a set of optimal values can transform
the energy of noise into signal as well as
enhanceSNR,, .In addition, we select different am-
plitude and noise intensity as test data for verifying
the proposed method. With the increase of noise in-
tensity, SNVR,, basically unchanged, while A,, has a
significant rise, which means the optimized adaptive
stochastic resonance is suitable for strong noise envi-
ronment better. Moreover, sea clutter is added for
testing the practicability of the proposed method and
the result is even better than the simulation, so that

the accuracy, robustness and generalization are ad-
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vanced.
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